
NAVAL POSTGRADUATE SCHOOL
Monterey, California - coY

'I.

THLD STESIS-

by

Shih-Ming Shu

December 1989

Thesis Advisor: Chin-Hwa Lee

Approved for public release; distribution is unlimited

9,

E.

Unclassified
security classification of this page

REPORT D)OCUMENTATION PAGE
a Repor t Securitv Classification Unclassified l b Restrictive markings

2a Security Classif ication Authority 3 Distribution Availability of Report
2b Declassification Downgrading Schedule Approved for public release; distribution is unlimited.
-1 Performing Organization Report Numberis) 5 Monitoring Organization Report Number(s.,

6a Name of Performing Organization 6b Office Symbol 7a Namp of Mfonitoring Organization
Naval Postaraduate School Olfappicable) 62 Naval Postgraduate School
6c Address (cir, state, and ZIP cede) 7b Address (city, state, and ZIP code)

MontrevCA 9943-000Monterev, CA 93943- 5000
Sa Name of Funding Sponsoring Organzto 8b Office Symbol 9 Procurement Instrument Identification Number

Sc Adres (iry.stae, nd ZP cde)10 Source of Funding Numbers

Program Element No IProject No ITask No Work Unit Accession No

I :ncl~d, se-urirv is~~cU E PLI) MODELING WVITHI VHDL

2Persc'ttal Author(s) Shih-NMin2' Shu
t3a T'sre of Rcrnori 13b -Iime Covered 1-1 Date of Report (year, month, dal, 1 Page CountIMaster s T hesis Frm oDecinbe'r 1989 135;

16 Surpemenzary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or po-
sition of the Department of Defense or the U.S. Government.

17COSti Code&s IS Sutject -Terms (co'itbite on rplerse if necessary and identify biy bl,.ck number
Flid Orcup ISulcroun VI-IDLALDL,IIARD WARE DESCRIPTION LANGUAGE.EPLD.PLA.

ll Abstractn:c en revcrsc if nctu's.ar ' aizd idenutifyv6 vy bh'cA nijnbr
Incompatibility betvveen separately-desianed subsystems has long been a problem in the logic design industry. This

problem --reatly affects tile productivity of logic desien' procedures. It also makes system maintenance and second source
* procurement very difficult. The mrilitany and IEEE 1076 standard hardware description laneua2e VhIDL is a prormising sol-

ution to this problem. In this thesis, thec VIII)L languagle was used to model an industry-wid1e popular device -- erasable
programable logic dev-ice (LPLD). The EIPLD modeling problems are discussed via the modeling of two LPLD chips. EP310
and I-P ISH(. 'I he solutions to these problems are described and tested. The goal of this thelsis is to prov ide examples of
VI IDI coding techniques related to the [P1 1) model-ing. T'hese coding techniques with the associated LPL D library can
be used to support future system level lo ic desian.

L~r~bu~u.A~riabI~vOf AbStraCt 21 Abstract Sccurit% Clalsifica*.ion
N a. le ~n~:d E : al; reror 1] DI IC ulsers Uinclassified

('hinl~waI cc4f)h 646-2.1(M1 621 c
DDi 1 0101 I 43.s-i S.,A A3,PR cdr:'n ma\ c uscd u:;::i o!-i:c z1,: N~ a:a.c~I; page

L. ic lassitied

Approved for public release; distribution is unlimited.

EPLD Modeling with VHDL

by

Shih-Ming Shu

Lieutenant, Taiwan Republic of China Navy

B.S., Chinese Naval Academy 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

Decmber 1989

Author:_ _______

Shih-Ming Shu

Approved by:

Chin-Hwa Lee, fhesis Advisor

Jo .Bter eodRader

John P. Powers, Chairman,
Department of Electrical and Computer Engineering

ABSTRACT

Incompatibility between separately-designed subsystems has long been a problem in

the logic design industry. This problem greatly affects the productivity of logic design

procedures. It also makes system maintenance and second source procurement very

difficult. The military and IEEE 1076 standard hardware description language VHDL

is a promising solution to this problem. In this thesis, the VHDL language was used to

model an industry-wide popular device -- erasable programable logic device (EPLD).

The EPLD modeling problems are discussed via the modeling of two EPLD chips,

EP31O and EPIS00. The solutions to these problems are described and tested. The goal

of this thesis is to provide examples of VHDL coding techniques related to the EPLD

modeling. These coding techniques with the associated EPLD library can be used to

support future system level logic design.

Codes
* lox

"c I
ill

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases of interest. While every effort has been made, within

the time available, to cnsure that the programs are free of computational and logic er-

rors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.

TABLE OF CONTENTS

I. INTROD UCTION .. I

A. VHSIC HARDWARE DESCRIPTION LANGUAGE (VHDL) 1

B. ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD) 2

C. EPLD M ODELING .. 3

II. VHDL FEATURE AND ENVIRONMENT 5

A. BASIC FEATURES OF VHDL 5

1. D ESIG N EN TITIES 5

2. CONCURRENT STATEMENTS 11

a. BLOCK STATEM ENT 11

b. PROCESS STATEMENT 14

3. D A TA TY PES .. 14

4. CLASS OF OBJECTS 19

a. C on stants19

b. V ariables 19

c. S ign als .. .2 0

5. A TT R IBU TES .. 22

6. SUBPROGRAM AND PACKAGES 23

7. OPEIA.TORS AND CONTROL STATEMENTS 26

B. VIIDL SUPPORTING ENVIRONMENT 28

1. SIMULATION PROCEDURE 30

2. REPORT GENERATOR 32

3. VIIDL LIBIANRY SYSTEM (NTS) 33

V

III. M ODELING THE EP310 35

A. INTRODUCTION OF THE EP310 35

B. DEFINE THE PROBLEM 39

C. DECOMPOSITION OF THE EP310 39

D. ESTABLISH DATA FLOW 40

E. SIGNAL ASSIGNM ENT 43

F. JEDEC FILE INFORMATION TRANSFER 44

G. M ULTIPLE LEVEL LOGIC 46

H . BUSSED SIG N A L .. 47

I. PRODUCT TERM INTERNAL CONNECTION : 49

J. EPLD TIM ING SIM ULATION 51

I. REGISTER TIM ING 52

K , C O U N TER ... 57

IV. M ODELING TIIE EPI800 58

A. INTRODUCTION OF THE EPSO0 58

B. DECOMPOSITION OF TIlE EPISOO 61

C. ESTABLIStt DATA FLOW OF THE MODEL 62

D. GENERA,\L MACROCELL AND ENHANCED MACROCELL 66

E. TH E REUSABLE QUADRANT MODEL 66

F. THE EP1800 BUS STRUCTURE 68

G. UP DOW N COUNTER 69

V . C O N C LU SIO N S .. 71

A . G E N EL ,,L ... 71

B. IRO G RA M SPEED ... 72

vi

C. RECOMMENDATIONS FOR FUTURE STUD 73

APPENDIX A. VIHDL SOURCE CODE FOR EP310 AND EP1800 MODELS . 74

A. VHDL SOURCE CODE FOR EPLDPACKAGE 74

B. VHDL SOURCE CODE FOR EP310 MODEL 77

C. VHDL MODEL FOR EPI800 85

APPENDIX B. VHDL CODE FOR TESTBENCH 97

A. VHDL SOURCE CODE FOR TOP ENTITY DECLARATION 97

B. TEST BENCIt ARCHITECTURE BODY FOR EP310 98

C. TESTBENCH ARCHITECTURE BODY FOR EPI800 103

APPENDIX C. EXAMPLES OF SIGNAL SELECT FILE AND SIGNAL MAP

F IL E . 10 8

A. SIGNAL SELECT FILE los

B. SIGNAL MAP OF TIIE TESTEP3 MODEL 109

APPENDIXD. MACRO VAX 'VMS SYSTEM COMMAND . '19

A. M ACRO VAX VMS SYSTEM COMMAND FOR EP310 MODEL 119

B. MACRO VAX VMS SYSTEM, COMMAND FOR EPI800 MODEL ... 120

LIST O F REFERENCES .. 121

INITIAL DISTRIBUTION LIST 123

vii

LIST OF TABLES

Tablc 1. ATTRIBUTE VALUES.....................................23

Tablc 2. VHI-ID OPERATORS......................................27

Table 3. VHJDL CONTROL STATEMENTS............................27

LIST OF FIGURES

Figure 1. Scheme for various architectural bodies in one entity 6

Figure 2. Full adder gate structure 8

Figure 3. Full-Adder VHDL structural description 9

Figure 4. Description of andgate component 9
Figure 5. Description of or _gate component 10

Figure 6. Description of xorgate component 10

Figure 7. Example of nested blocks 12

Figure 8. D latch block diagram 13

Figure 9. Example of D latch using guarded block 13

Figure 10. Process statem ent .. 15

Figure It. VHDL data type classification scheme 16

Figure 12. Signal assignment example 21

Figure 13. Multiple signal drivers and resolution function 22

Figure 14. Package exam ple ... 24

Figure 15. VHDL support environment29

Figure 16. Sim ulation procedure 31

Figure 17. BLOCK diagram of EPLD design environment 36

Figure 18. EP310 block diagram 37

Figure 19. EP310 m acrocell ... 38

Figure 20. Decomposed EP310 hierarchical block diagram 42

Figure 21. I 0 primitive signal flow diagram 47

Ficure 22. EPLD tiing block diagram 52

Figure 23. EP310 hierarchical block diagram wi th time parameter 53

ix

Figure 24. D register timing diagram 54

Figure 25. Hold time timing diagram 56

Figure 26. EP180 block diagram 59

Figure 27. Local m acrocell ... 60

Figure 28. G lobal m acrocell ... 61

Figure 29. EPI800 hierarchical model diagram 63

Figure 30. EPI800 chip overview 64

Figure 31. 16 bit up down counter block diagram 70

II |

ACKNOWLEDGEMENTS

I would like to express my gratitude to my Thesis Adviser, Professor Chin-Hwa Lee,

for his advice and assistance in completion of this thesis.

I would also like to thank Professor J.T. Butler and others who contributed their

assistance in the accomplishment of this thesis.

Finally, I wish to express my gratitude to my parents whose love and affection has

been the force tLat belped me to achieve this goal of education.

xi

I. INTRODUCTION

A. VHSIC HARDWARE DESCRIPTION LANGUAGE (VHDL)

While system standards such as the Unix and the X Win.ow System continue to be

refined and redefined, significant application-level standards are emerging. On one hand,

there is explosive growth of electronic computer-aided engineering (CAE) and

computer-aided design (CAD). On the other hand, because of the lack of a standard,

numerous dissimilar and incompatible CAE'CAD databases have proliferated.

New circuit designs inevitably will adopt part of old designs which were proven to

be applicable even with a device technology break-through. Because of the large number

of vendor-specific CAE CAD formats, tools, and languages, the portability of designs

are difficult, if not impossible. Consequently, designers tend to redevelop their designs

in the new working environment rather than port the existing designs from another in-

compatible working environment. Different formats and tools continue to grow. It

causes system design to be even more inefficient. The need for an industry standard is

apparent.

When the Department of Defense launched the Very ltigh Speed Integrated Circuit

(VIISIC) project, it was confronted with the problems mentioned above. Furthermore.

since most of the government systems tend to have a long service life, the last system

on a given program might well be delivered fifteen years after the first production ship-

ment. Both would be expected to remain in operation for at least ten years from that

point in time. Technology, on the other hand. is irrevocably non-static. Technology

used in the first delivery would be something quite different from those of twenty-five

ycars later. Yet. the operating systems and their maintenance require compatible re-

placement of components. Standardization, if it could accomplish this, could also assist

in the procurements from second sources [Ref. 11.

In the early stage of the VHSIC program, an idea arose that these problems might

be resolved through the development of a standard hardware description language

(HDL). A program was launched in August of 1983 for the development of a VHSIC

Hardware Description Language (VHDL) [Ref. 1].

The goal of the program was to develop a language which could simultaneously

function as a design automation tool interface and as a mechanism for documenting the

design of a transportable electronic system and its components.

In August 1985, version 7.2 of the language was released by the Department of

Defense. After the release of version 7.2, the IEEE sponsored the standardization. The

goal was the development of an improved standard of the language. The review process

was completed by May 1987 and the language reference manual (LRM) was released for

industrial reviw. In December 1987 VIIDL was accepted as IEEE-STD-1076-1987.

Initially, the VtIDL was geared toward system-level design and documentation.

However, after the design of the language has received inputs from many individuals in

the computer industry, the V11DL offers not only behavioral constructs [Ref. 2] but also

register transfer-level (RTL) and structural (i.e., gate level) constructs. The user thus can

describe a circuit at the register and the gate levels as well as the behavioral level.

B. ERASABLE PROGRAMMABLE LOGIC DENVICE (EPLD)

To achieve improved system performance in the marketplace, more and more man-

ufacturers have sought higher levels of integration (functional density) for the electronic

components in the design. This led to various forms of custom chips. Yet, the custom

chips design has the following problems:

1. Development lead times are relatively long.

2. I)esin cost are significant.

3. Inventory is dedicated to a specific application which is expensive. This prohibits
adequate second sources.

4. Design changes in midstream are not allowed due to lead time and inventory con-
straints.

The concept of the erasable programmable logic device (EPLD) is to provide the

user the benefits of large scale integration circuit without the drawbacks of full custom

chips. The benefits of such parts include off-the-shelf availability, minimal design costs,

multiple sourcing from distributors, and flexible interchangeable inventory.

The EPLD basically consists of two parts. The first part is the conventional pro-

grammable array logic (PAL) structure. The second part is a user-configurable 1.0

control architecture. Inside the 1, 0 control architecture there are signal path, select

switches, and flip-flops.

With improved techniques. the speed and functional density of EPLD's are getting

faster and higher. This makes the EPDL even more attractive. It is believed that more

special purpose logic designs will use EPLD in place of the custom chips.

C. EPLD MODELING

In this study the VHDL language is used to model two EPLD chips, to find out

what kind of problems will be encountered when modeling this type of. chips, and to

propose the VIII)L solutions to these problems.

The best way to describe the EP1LD is at a register transfer levcl. In this study the

register transfer level models are used to simulate both the EP310 and the EPISO0.

These devices are EPLD with approximately 300 and 2100 gates, respectively.

A general introduction of the VHtDL language and its working environment is the

main subjects of Chapter 11. In Chapter III the structure of a small scale EPLD. EP3 10.

is first introduced. It is followed bv a general introduction of the EPLD's design envi-

ronment. Then, the specific problems encountered in modeling the EP310 chip are dis-

cussed. Chapter IN' introduces the modeling of a large scale EPLI), L1PI800. The

3

advantage and disadvantage of using the VHDL language in modeling a digital circuit

design is discussed in Chapter V. At the end, Appendix A contains the VHDL source

codes for the EP310 and t ,w EP1800 models. Appendix B contains two simulation ap-

plication VHDL sources files and their results. Appendix C contains an example of the

signal select file used in the VHDL supporting environment and a signal map example

which is produced by the VHDL supporting environment. Appendix D contains the

procedures of constructing the EP310 model and the EP1800 model in the VHDL 1076

standard supporting environment installed at the Naval Postgraduate School.

I1. VHDL FEATURE AND ENVIRONMENT

A. BASIC FEATURES OF VHDL

This chapter constitutes a brief introduction of the VHDL. The advanced features

of the VHIIDL and corresponding examples related to the EPROM modeling will be in-

troduced later when they are encountered.

1. DESIGN ENTITIES

In VHDL, a given section of a logic circuit is represented as a design entity. The

logic circuit represented can be as complicated as an entire system or as simple as an

AND gate. A design entity is defined by an entity declaration together with one or more

corresponding architecture bodies as shown in Figure 1.

An entity declaration basically defines the interface between a given design en-

tity and the environment in which it is used. The actual relationship between these in-

puts and outputs is specified in the architectural body. This body can specify the

behavior of the entity directly such as a primitive body. The architectural body can also

be structurally decomposed into simpler components. As shown in Figure 1, "Architec-

ture A" is decomposed into smaller components. Each one of the components is an

entity itself, and were binded to the "Architecture A" by "configuration specifications".

Illustrated below is an example that shows the basic features of an entity dec-

laration.

entity FIILLADDER is

generic(sumdelay,carrydelay: TIME: =25ns);

port(x,y,cin: in BIT;z,cout: out BIT);

end FULLADDER:

5

Entity

firchitecture
A B C D1

Component declaration
0

Binding by
Component declaration confivuration

specifications

Entity

fl rch It e ct u re

Figure 1. Scheme for various architectural bodies in one entity

6

The entity name of the above example is "FULLADDER" and its ports are "x",

"cin", "z", and "cout". Each port has an associated mode, which identifies input, output,

and an associated type. In this case, all the signals have the same signal type, i.e., BIT.

The terms port and generic in the entity declaration above serve as the interface

of the module. Port is used to pass the declared signals from external entity into the

module. Generic is used to pass the parameters from the external entity into the module.

With generic as an interface, it is possible to reuse a design entity whenever practical.

For example, generic can be used to pass a faster delay parameter to the module to

simulate a faster device. If the variable of a generic appear in a conditional signal as-

signment statement, then the behavior of the design entity may be changed by changing

the value of that generic variable.

Given the entity interface it is also necessary to specify what the

"FULLADDER" does in an architectural body. An example is shown below:

architectural Data_Flow of FULL_ADDER is

begin

z<=x xor y xor cin after 20ns;

cout<=(x and y)or(x and cin) or(y and cin) after 25ns;

end Data_Flow;

The structural body used in the above example is a behavioral description not

involving the actual physical device. In most of the cases, the behavioral description

model is the first step in building a real system.

x
Y

loc2

A2I

Figure 2. Full adder gate structure

As mecntioned before, a single entity may have several architectures corre-

sponldiig to diffci crit way.; of realizing thc entity. Figure 2 is a physical structuiec of the

'Ti]LL ADI)LR', and Figuire 3 is the structural realization of it in VI IDL.

architectural STRUCTURAL of FULLADDER is
begin

component and gate
generic (delay: TINME 5ns);
port (a.b:in BJIT;c out BIT);

end component;
component xor gate

generic (delay: TIME :=5ns);

port (a.b:in BJIT~c out BIT);
end component:
component or-gate

generic (delay: TIME := Sns);
port (a.b:in BIT~c out BIT);

end component:
signal loci. loc2, loc3: BIT;

begin
XI:xor Late port map: (x.v.Iocl):
X2:xor_2ate port map: (locl.cin.sum):
Al:and_gate port map: (cin~locl.loc2);
A2:and-gate port map: (x.N.lIoc3).
Ol:or gate port map (loc2.loc3). cout):

end STRUCTURAL;

Figure 3. Full-Adder VHDL structural description

entity. and_2atc is
generic (dehtv: TIME :5ns),
port1 (a.b: in BIT: c: out BIT);

end

architecture BEHAVIOR of and_gate is
begin

c < = a and b.
end BEHAVIOR;

Figure 4. Description of andgate component

entity or-gate is

generic (delay: TIME = 5ns);

port (a,b: in BIT; c: out BIT);

end

architecture BEHAVIOR of or gate is

begin

c <= a orb;

end BEHAVIOR;

Figure 5. Description of or-gate component

entity xorgate is

generic (delay: TIME := 5ns);

port (a,b: in BIT; c: out BIT):

end

architecture BEHAVIOR of xorgate is

begin

c < = a xor b;

end BEHAVIOR;

Figure 6. Description of xorgate component

Three components, xorgate. and_gate, and orgate, arc declared in the decla-

ration section of the architecture "'STRUCTURAL" in Figure 3. The port specification

used in the components of the "'FULLADDER" indicates that there are two input sig-

nal "a", "b", and an output signal "c". The entity of these components have the identical

port specifications as the "FULLADDER" dose, (see Figure 4. Figure 5. and

10

Figure 6). Three signals loci, loc2, and loc3 are also declared in the "FULL-ADDER".

These declared signals are local signals, which are visible only inside the

"FULL-ADDER" entity.

In the "FULLADDER" entity, five components are instantiated after the key

word begin; that is, five specific instances of general component entities are created. In

each instantiation, there is a unique label associated with it (i.e., XI, X2, Al, A2, and

01) as well as a port map. The generic map is optional. If the generic map is not stated

in the instantiation, the assigned default value will be used. In the above case, since all

the component instantiations does not state their generic map, the generics of the com-

ponents will use their default value, i.e., five nanosecond delay.

The port map creates an association between the inputs, outputs of the compo-

nent declaration and the signals in the instantiated components. In the

"FULL-ADDER" case the association is "by position". Named association can also be

used. which looks like the following:

Al: andgate port map (c=>1oc2, a=>cin, b->cin);

2. CONCURRENT STATEMENTS

Some of the most important characteristics of the concurrent statements are

described in this section. Concurrent statements are used to define interconnected

blocks and processes that jointly describe the overall behavior or structure of a design

entity. Concurrent statements are executed asynchronously with respect to each other.

a. BLOCK STATEMENT

The basic concurrent statement in VHDL is the block statement. The block

consists of the declaration section as well as an executable section. The executable sec-

tion can have all possible concurrent statements, which may iniude other block state-

ments. 'The architectural body of the entity itself is basically a block. Consider the

example shown in Figure 7. 1 lere, the architectural body "1BLOCKSTIRCTURE" can

11

be seen as an outer block. The block "A" under the "BLOCKSTRUCTURE" is its in-

ner block. In general. any number of nestings of blocks are possible. Note that in Fig-

ure 7 the text following the symbol "--" are comments in VHDL and will not be

executed.

architecture BLOCK STRUCTURE of FULLADDER is
-- Outer Block Declaration Section

signal locl : BIT;
begin

-- Outer Block Executable Section
loc I< = x xor y after delay;
sum < = loci xor cin after delay;

A:block
-- Inner Block A Declaration Section

signal lacl,loc2,loc3,loc4 : BIT;
begin

-- Inner Block A Executable Section
locl < = x and y after delay;
loc2 < = v and cin after delay:
loc3 < = iocl or loc2 after dela';
loc4 < = loc3 or loc4 after delay:
cout < = loc3 or loc4 after delay;

end block A:
end BLOCKSTRUCTURE;

Figure 7. Example of nested blocks

In VNHDL, the block statement contains an optional guard expression. If

there is an expression immediately following the key word block, then an implicit signal

called guard with a type BOOLEAN will be created. The value of guard is dependent

on the condition of the expression that follows the block. When a "guard condition"

becomes TRUE, it can enable certain types of statements inside the block. By using a

"guarded block" it is possible to model the operation of a synchronous circuit.

12

dq
D type q

flip-flop

CLK q

CLII

Figure S. D latch block diagram

entity D Latch is
port(CLK.CLR,D:in BIT; Q,Q_not:out BIT);

end DLatch;

architecture GUARDEDCLOCK of DLatch is
begin

block(CLK ='I' or CLR='1')
signal S: BIT;

begin
S < = guarded 0' when CLR='1' else

D:
Q < S after 1Ons:
Q not < = riot s after IOns;

end block:
end GUARDEDBLOCK;

Figure 9. Example of D latch using guarded block

A "guarded block" example is given by modeling the D latch as shown in

Figure S. This D latch will reflect the value of the input signal "d" when the clock

(CLK) is high. i.e., equal to 'I'. The latch also contains an asynchronous clear (CLR)

13

input. When CLR = 1, the latch is reset. The asynchronous clear overrides the clock.

The corresponding latch model is shown in Figure 9. The block header expression

"'(CLK= '1 or CLR= 'l1)" define the value of the implicit guard. The statements con-

tains the key word guarded will not be executed unless the value of guard is TRUE. In

the D latch case, if the guard is FALSE, the local signal S will remain the same value.

If the guard is TRUE and the CLR is a '1', then S will be assigned to 0'; otherwise S

will follow the input signal D. Note that the D latch illustrated above is a level-sensitive

device. It will be shown in Chapter III that the guard is not restricted to level-sensitive.

Edge-sensitive guard is available as well.

b. PROCESS STATEMENT

Another major modeling element in VHDL is the process. A protess state-

ment defines an independent sequential process. The process can represent the behavior

of some portion of a design. An example is shown in Figure 10. Note that the process

be2in with the key word process(line). The parameter inside the parenthesis is called the

sensitivity list. Whenever the signal inside the sensitivity list change. the process is ac-

tivated and the statements within the process are executed.

3. DATA TYPES

The type is an important feature of VItDL. The VIIDL is strongly typed, which

means that inadvertent mixing of types in an operation will be flagged as an error. The

strong typing features are very helpful for capturing the designer's intent; they also help

to check the design data-flow correctness.

A type is characterized by a set of values and a set of operations. A subtype is

a subset of the values of a type. The set of operations defined for a subtype include the

operations defined for the parent type: however, the assignment operation to an object

having a given subtype only assigns values that belong to the subtype.

14

process (line)begin1

pulse < = "T" after 5ns, '0' after 15ns;
end process;

I L I

S o I
pulse: .___

InI i I a
I I I

III I I
Ig I i II

"IME(:) t. 10 "20 '2, 4Q' +50 +60

I igtu I (. I'rocess statemnn: (luseCoiivcrtcr)

lIi thec VI ll)L the set of all iintegcrs are prcdefined as type INI EGER(, and all

positive imtc~crs are predefined as subtype POSITIVE in the following dccliration

subtype POSITIVE is INTEGER range 1 to INTEGER'IIIGII;

Where the attribute 'HIGH will yield the upper bound value of the INTEGER. Here,

with the key word range the subtype POSITIVE will have the same upper bound value

as the INTEGER has. According to the subtype operation rule mentioned above, the

subuaction operation implied for INTEGER, may not be used in subtype POSITIVE,

bccausc the subtraction of two positive numbcrs may produce a negative value.

15

TYPES

SCALAR COMPOSITE

ENMEATON NUMERICAL PHYSICAL ARRAY RECORD

REAL INTEGER

Figure 11. \ HDL data type classification scheme: JFrom Ref.'3)

The -*I IDL Language Reference Manu-l" gives a useful data type classification

scheme- which. Is illustrate3 in Figure 11. Data types, are classified as sca,"ar (one-

dirmensional) or comrosiie kmiultidimensionah). Thc- cnumeraii'o type is the most fre-

quently uscu' scalar types. For example. the,1 predefined type BIT is an enumerationl type.

which is defined as follows:

type BIT is (O~1)

Numneric types are either INTEGER or REAL. The REAL type call be very

useful in modelina an anlog-to-dicital interface or a signalI processing algorithm. Some

tx-pc declaration examples arc Iilustrated below:

type INDEX is range 0 to 9; --integer type.

type VOLTAGE is range O. 0 to 10.0; --real type.

Each of the type declared in above example has a range. The base type (i.e., either IN-

TEGER or REAL) is implied by the values in the range.

The VHIDL also provides the physical type, which is used to represent some

physical quantities (such as, time, voltage, and capacity). TIME is a predefined physical

type in VHDL, and its declaration is shown below:

type TIME is range implementation_defined

units

fs; -- femtosecond

ps = 1000fs; -- picosecond

ns = 1000ps; -- nanosecond

us = 10OOns; -- microsecond

ms = 1000us; -- millisecond

sec = 1000ms; -- second

min = 60sec; -- minute

hr 60min; -- hour

end units;

Note that the base unit in TIME is femtoseconds (fs). Both the range and the base ujit

are user selectable. But, the upper bound of the range cannot exceed the host machine

limit. With the range from 0 to I E20. the TIM E can represent up to 27.7 hours (00.0 -_0

second).

The Comnposiic types are either array- tvpes or record types. Below is an array

type declaration example:

type BYTE is array(O to 7) of BIT;

17

As declared above, BYTE is an array type of eight array elements. BIT is the

base type of these array elements. Index range of the BYTE is constrained and is from

"0 to 7". Another example with unconstrained index range is shown below:

type BITVECTOR is array(NATURAL range <>) of BIT;

The expression "NATURAL- in BITVECTOR above means that the index has a

subtype of natural number, i.e., non negative number. The symbol " < > - following the

key word range stands for an undefined range. The user must specify this range when

it is employed. For example, BIT VECTOR(0 to 7) for ascending range, or

BITVECTOR(7 downto 0) for descending range.

As the name implies, a record type is a composite type consisting of a number

of fields. For example, type DATE could be defined as a record type as follows:

type DATE is

record

DAY : INTEGER range 1 to 31;

MONTH : MONTH_NAME;

YEAR INTEGER range 0 to 3000;

end record;

The type MONTINAME would be an enumeration type consisting of the names of

the months.

As mentioned before, the variable in VHlDL are strongly typed, and this means

that the objects with different types cannot be involved in the expression directly. An

example is illustrated as follows:

18

-- declaration part

signal A : BYTE := "00001111";

signal B : BITVECTOR(O to 7) := "I1110000";

signal C : BYTE;

-- expression part

C <= A and B; -- this expression will NOT be accepted by VHDL

Although the A and the B all have eight bits, because they are different types, the VHDL

will not accept the expression shown in the above example. Note that in the declaration

part, the signal A is assigned with an initial value via the symbol ": =' immediately fol-

lowing the type.

4. CLASS OF OBJECTS

In VHDL there are three classes of objects: constant, signals, and variables.

a. Constants

A constant is an object whose value may not be changed. Some examples

of constant declarations are:

constant PI : REAL :=3. 1416;

constant MESSAGE : STRING(1 to 13) := "demonstration";

Note that each constant declaration must includes the name, the type, and the value of

the constant.

b. Variables

Variables are objects whose values can be changed. When a variable is

created by a declaration, a container for the object is created along with it. Variables

are changed by executing a variable assignment statement: for example.

A := B + C;

19

Variable assignment statements have no time dimension associated with them, i.e., their

effect is felt immediately. Thus, variables have no direct hardware correspondence. But,

they are useful in algorithmic representations. Some examples of the variable declara-

tions are:

variable FLAG BOOLEAN TRUE;

variable COUNT INTEGER 0;

The variable declarations specify the name, type, and optionally an initialization value

for the variable. Variables used in a process block are considered to be static; that is, the

value of the variable is maintained by the simulator until it is changed by a variable as-

signment statement.

c. Signals

Signals are objects whose values may be changed, and the execution has a

time dimension. Signal values are changed by signal assignment statements. The signal

assignment statements are evaluated whenever one of the right hand elements of the

statements changed its value. An example is shown in Figure 12. Note that the signal

assignment statement uses the " = " symbol in order to differentiate it from the vari-

able assignment statement. The "after IOns" in Figure 12 means that the "local" will take

on its new value 10 ns later from the present simulation time. If the signal assignment

statement has no after clause, then it is equivalent to "after ons".

All the signal assignment statements in the same process level are concur-

rently executed in the same simulation cycle. Consequently, the positions of the signal

assignment statements in the same process level are irrelevant. Thus. the signal assign-

ment statements in Figure 12 can also be rewritten as

d <= local and c;

local <= a and b after 10 ns;

20

b

AD -d
C

--signal assignment statement
local < = a and b after lOns;

d < = local and c;

Figure 12. Signal assignment example

One of the difference between variables and signals is that signals can have

multiple queuing containers called drivers. The value of the signal is a function of all the

related drivers. An example related to multiple drivers is shown in Figure .13. In the

figure two signal assignment statements A and B assign values to the same signal X.

For each signal assignment. a driver is created to hold the result of that assignment. In

this example, drivers are labeled Dax and Dbx. The value of the signal X is determined

by a resolution function F in this example. The resolution function F is user defined. It

is activated whenever the drivers receive new values. The value of the signal is updated

to the new value that coming from the resolution function. In Chapter I1, the use of

a resolution function to model the EP310 will be shown.

21

Signal assignment A

Dax -- X 4-M

Function /

/

x iL iF1$ Drivers

Signal
I ;Signal assignment B

Db× -x- X - N;

Figure 13. Multiple signal drivers and resolution function: [From Ref. 3]

ATTRIBUTES

An airribute defines and evaluates some characteristics of a named object. Some

attributes are predefined and are related to types, ranges, values. signals, or. functions

[Ref.-4: pp.4-14,1 5]. Signal attributes are particularly important in modeling. Some

predefined signal attributes are shown in the following examples:

1. S'EVENT returns a BOOLEAN value. If an event has occurred on S during the
current simulation cycle the returned value is TRUE, otherwise, it returns the value
FALSE.

2. S'STABLE(T) is of type BOOLEAN. It is TRUE ifS has been stable for the last
T time units. If T is zero, it is written as S'STABLE.

3. S'DELAYED(T) is the value of S. T time units earlier. It has the same type as S.

These attributes are useful in detecting signal changes and will be used in the later

chapters.

Another useful set of attributes are those associated with arrays. For example,

suppose that an array variable was defined as follows:

variable A : BITVECTOR (0 to 15);

Table 1. ATTRIBUTE VALUES

Attribute Value

A'RANGE 0 to 15

ALENGTH 16

\ E FT U
..\RIGHT 15

Then, the set of attributes of variable A would have values indicated in Table 1 Manx

other useful attributes are defined in the "VhIDL Language Reference Manual." [Ref.

..pp.l. I9

6. SUBPROGRAIM AND PACKAGES

Sudprograins define algorithms for computing values or exhibiting. certain be-

havior. There are two forms of subprogram: procedurcs and functions. A procedure call

is a statement; a function call is an expression that returns a value. The definition of a

subprogram can be given in two parts:

1. A subprogram declaration defining its calling conventions.

2. A subprogram body defining its execution.

Packagcs, like subprogram. may be defined in two parts. A package declaration

defines the visible contents of a package: a package body- provides the hidden details. In

particular. a package body contains the bodies of all subprograms declared in the pack-

age dct~L2ration.

package Multiplication is
type BIT ARPAY is (INTEGER range< >) of BIT;
function BitArray_Int (bits: BITARR ,Y) .return NATURAL;
function Int to BitVec (int. length: NATURAL) return BITARRAY;
procedure Obtain_Product (a.b: in BITARRAY;

c: out BITARRAY;
ov: out BIT):

------ other declarations

end Multiplication;

package body Multiplication is
function BitArrav to Int (bits: BITARRAY) return NATURAL is

variable result: NATURAL := '0';
begin

for i in bits'RANGE loop
result := result 2:
if bits(i) = 1' then

result : = result + 1;
end if:

end loop:
return result:

end BitArrav to Int:

function Int toBitArray----------
..

..

procedure Obtain_Product(a.b: in BITARRAY,
c: out BIT ARR Y;
ov: out BIT) is

variable local: INTEGER:
constant limit: INTEGER := 2 * a'LENGTH:

begin
local : BitArrayvto lnt(a) BitArrayto_ Int(b):
if local > limit-I then

local "= local rood limit;
Ov " 'F;

else
OV '0':

end if:
c:= lnt to BitArrav(local. a'LENGTH);

end ObtainProduct:

end Multiplication;

Figure 14. Package example

24

Shown in Figure 14 is a package consisting of a type declaration and the inter-

faces for two functions and a procedure. The code for the functions and the procedure

are given in the package body. If a package contains no subprograms, a package body

is not required. The package can be accessed by placing a use clause before the interface

description of an entity. For example, if there is a entity called MULTIPLER8 need to

use the procedure ObtainProduct inside the Multiplication package in Figure 14. One

could do this as follows:

use WORK. Multiplication

entity MULTIPLER8 is

port (a,b: i, BITARRAY(O to 7);

prod: out BITARRAY (0 to 7);

ov: out BIT);

end MUuTIPLER8;

architecture BEHAVIORAL of MULTIPLER8 is

begin

process (a,b)

variable c: Multiplication.BITARRAY (a'RANGE);

variable loc: BIT;

bigin

Multiplication.ObtainProduct (a,b,c,loc);

prod <= c after lOOns;

ov <= loc after lOOns;

end process;

end BEHAVIORAL;

25

Note that when the package feature is referred to by the statement inside entity

"MultiplierS", the package name must be placed in front of the package feature in order

to establish "visibility" between those referred items and the entity. For example, the

procedure "ObtainProduct" used in the entity "MULTIPLER8" must have the package

name -Multiplication" in front of it. If the clause .all is added at the end of the use

statement, i.e., use WORK.Multiplication.all, then all the declarative items as well as any

of its subprogram bodies contained in Multiplication package are "visible" within the

entity MULTIPLERS. In this way, there is no need to repeat the package name in front

of the referred package items.

Packages are very useful language features. Design groups can use group

standard packages that contain the type declarations anc subprograms related to their

projects. As it will be seen in modeling the EPLD, a group standard package EPROM

will be built and extensively used in the program.

The VHDL language defines a package STANDARD that can be used by all

entities. This package contains the definitions for types BIT, BIT VECTOR,

BOOLEAN, INTEGER, REAL, CHAR.ACTER, STRING, TIME, as well as subtype

POSITIVE and NATURIAL.

7. OPERATORS AND CONTROL STATEMENTS

The operators and control statements of VHDL are similar to those of the other

high level languages, especially Ada. A complete set of operators are shown in

Table 2.

26

Table 2. VHDL OPERATORS

Class Class Members

Logical not and or I nand nor f xor

Relational = .= I < % > I >

Adding + I-I&
Signing +I-

Multiplying / I mode rem

Miscellaneous * abs

Table 3. VHDL CONTROL STATEMENTS

IF LOOP RETURN

CASE NEXT WAIT

EXIT

The control statements of VHDL are shown in Table 3. Note that most of the

statements are very general, and only reserved word isait need a further discussion. The

wait statement causes the suspension of a process or a procedure. In the real physical

system, a process will frequently pause in its execution while waiting fu'r a event to occur

or a time period to elapse. Once the awaited event has occurred or the time period has

elapsed, execution of the process resumes.

In VHIIDL the wsait syntax is shown as follows:

wait on sensitivitylist until condition for timeout

The statement suspends the process until a signal in the "sensitivity_ list" changes, at

which time the "'condition" clause is evaluated. The "condition" clause is an expression

of type BOOLEAN. If it is TRUE. the process resumes. The "'time_out" clause sets the

maximum wait time after which the process will resume. As an example:

wait on x, y until (Z=O) for 100 ns;

This statement will suspend a process until either "x" or "y" changes, then the expression

°z= 0" is evaluated, and if the value is TRUE, the process will resume. The process will

resume after 100 ns, even if the signals do not change or the condition is FALSE.

Two major applications of the wait construct in modeling are the modeling of

component interaction and oscillator behavior IRef. 3: pp. 55]. The wait statement gives

the designer additional freedom in writing high-level behavioral models.

B. VHDL SUPPORTING ENVIRONMENT

The purpose of having a VIIDL supporting environment is to assist hardware de-

signers in making efficient use of the capabilities of the VHDL language. A typical

VIIDL supporting environment includes the design library, the Analyzer, and the Sim-

ulator [Ref 1]. Currently, there is only one VHDL supporting environment (Intermet-

rics Standard IEEE 1076 VI-IDL Supporting Environment) installed at the Naval

Postgraduate School. The following discussion will be based on this VIIDL supporting

environment.

The Intermetrics Standard IEEE 1076 VIIDL Supporting Environment consists of

a Design Database and four software components as shown in Figure 15. A gencral de-

scriptions of this V11DL supporting environment are listed as follows:

I. Design Database. The Design Database is the central part of the system. The da-
tabase of the hardware descriptions and related information are all stored in here.

2. Analyzer. The Analyzer checks the hardware descriptions for syntactic and static
semantic correctness. It also translates VIIDL text to the Intermediate VHIDL
Attributed Notation (IVAN) form, and installs the translation into the Design
Database.

3. Simulator. The Simulator computes the behavior of a hardware model described
in VHDL and thus provides a mean of checking dynamic semantic correctness.
The Simulator constructs simulatable modules from IVAN data. executes these
modules and generates reports on the runs. The Simulator consists of live sub-
components IRef. 51. four ofthem are related to user and will be discussed as fol-
lows:

2 S

z

0

-w.

0U mU< 0

0~0

F-)

<) C)C
-LU<

<2 0

C) E,) U

------ --- 4,

zz
< -I,*

U.! w L
W~

Fiure 15 0HD suprQnio m n: (oreyo nem isIc)

F-9

a. Model Generator (MG). The Model Generator translates IVAN data into C
source code, and compiles it to the simulation module.

b. Build. Build links separately model-generated units and makes an executable
Kernel in the Design Database.

c. Sim. Sim invokes the Kernel and passes user-defined runtime parameters to the
model. Execution of the simulation model will typically result in the production
of a file containing signal history.

d. Report Generator (RG). The Report Generator produces human readable re-
ports from the file of signal histories. The selection of signals and the format
of the report are determined by report control language file supplied by the user.

e. VHDL Library System (VLS). VLS provides the commands necessary for the
Design Database.

f. Design Library Manager. The Design Library Manager is the database man-
agement system used by the Analyzer, Simulator, and VLS to access data in the
Design Database.

1. SIMULATION PROCEDURE

After a VHDL model has been created, the model needs to be simulated. The

simulation procedure is shown in Figure 16. The first step, as shown in Figure 16, is

to invoke the Analyzer by typing the key word VHDL followed by the program file name

as shown in the file Batch -'Appendix D. If the model has no error, an IVAN form

data will be created. Two rules govern how VItDL design units are analyzed:

1. A body cannot be analyzed before its interface.

2. A unit that references a package cannot be analyzed before that package.

After the VHtDL program has been translated to the IVAN form, it then can

be sent to the Model Generator by typing MG preceding the design VtlDL unit name.

i.e., the name of the entity or the package just been analyzed. If the VIHDL unit is a

package body, the qualifier "'body" must follow the MG key word.

Each model when simulated needs to have a top entity. This top entity may be

thought of as a unit that contains a model under test. The top entity itself cannot have

any ports, but, it can have generics for passing parameters from external entity or

VtlDL supporting environment. An example is shown in the IESTBENCH ofAp-

30

VHDL file-name]

MG [/body] [/top] design unit-name

BUILD [I/replace] [/ker=kernel_name] top entity-name

SIM [/param] [/interactive] [/trace=selectfile] f/map] kernel name 1

RG [/map] kernel-name reportcontrolfile

Figure 16. Simulation procedure

pendix B. In the structure of the top entity, the user must provide a test vector mech-

anism in order to conduct the necessary testing. When generating this top entity, a

qualifier " top" must follow the key word MG.

After all the object modules have been "Model Generated", they can be "linked"

by typing BUILD. This will produce an executable Kernel in the work library. The user

can assign a kernel name by using the qualifier " ker= name" following the key word

BUILD.

3I

The SIM key word will execute the Kernel and generate a Run in the working

library. The SIM can be followed by a qualifier "/trace = select", where "select" may be

any file name which contains the pathnames of the selected signals. Consequently, the

Simulator will record the histories of these selected signals. In this way, the user can

discard those irrelevant internal signals, and use the limited memory to keep the wanted

signal information. If no trace qualifier is specified, which is the default, then the his-

tories of all the signals will be kept.

As mentioned above, the top entity can only have the generic declaration, which

can receive the values provided by the SIM qualifier ",'param= ". With this feature, the

user can control the simulation time or even change the operation of the model.

Besides the non-interrupting simulation mode, the VHDL supporting. environ-

ment also provides an interactive simulation mode as shown in Figure 15. In this mode,

the user can set the breakpoint, see the signal transitions, and change the status of the

signals. The interactive simulation mode is a very useful tool in debugging.

2. REPORT GENERATOR

The Report Generator will produce a readable report file from recorded infor-

mation. Its output signal and format are controlled by the report control file. An ex-

ample file is shown in Appendix B. The command to generate the report is as follows:

RG controlfile report-outputfile

Note that only those signals with histories preserved in the simulation can be generate

in the report.

The qualifier "'map" can be used with key word SIM and RG, this qualifier can

produce a signal map, which contains all the signals used in the model. With this signal

map. the user can easily find out the wanted signal palhnanies. An signal map example

is shown in Appendix C.

32

3. VHDL LIBRARY SYSTEM (VLS)

The VLS allows user to interact with the VH1DL Design Database. The user can

create his own library. A library is either a primary library or a secondary library. A

primary library may contains the following kinds of data:

9 VTIDL units. i.e., entity declarations, architecture bodies, package declarations,
package bodies, configurations.

* Simulation Kernel.

* Simulation runs.

* Other libraries.

The secondary library may contain only package bodies, architecture bodies,

and other secondary libraries. The purpose of secondary library is to allow users to

experiment with their designs by using alternative package bodies or architecture bodies.

The VHDL Library System is entered by typing the VLS key word. After en-

tering the VLS. the user can make his own library by typing the key word MAKELIB

followed by a physical library name, an example is shown below:

MAKELIB <<user account. EPROM>>

Note that the symbol " < < > > " means that the name inside is the physical name of

the created library. The useraccount is the user login name. In VLS thi.. name is

treated as a root library name. Every user must have a root library. In the example

above, a library called EPROM was created under the root library.

There are two predefined libraries: STD and WORK. STD is the logical name

of the standard library. WORK is the logical name of the current user working library.

The logical name can be declared as follows.

DEFINE EPROM <<useraccount. EPROM>>

All the created \ IDl)L units vill be stored in the current working library whose

default is the root library. If the user wants to change the current working library, he

33

or she has to type the key word SETLIB followed by the physical or logical library name

in the VLS environment. For example,

SETLIB EPROM

will change the working library to < < user-account.EPROM > >.

The design group members may share each others libraries. For example, as-

sume that there are two users, "phred " and "janus". If "janus" creates a entity that uses

the package EP310_PACK in the library EPROM, and the EPROM belongs to "phred",

she may declare

library EPROM;

use EPRO,.EP310_PACK. all;

entity ----------------

With the shared libraries, the user can avoid the redundant components and standardize

the design.

34

II1. MODELING THE EP310

A. INTRODUCTION OF THE EP310

The EP310 is an Erasable Programmable Logic Device (EPLD) manufactured by the

Altera corporation. A user can use the CAE design tools, as shown in Figure 17, tj

configure the connections in the programmable AND logical array and the flexible

output feedback section of an EP3 10. As shown in Figure 17, the user can do his design

via schematic capture entry, state machine entry, netlist entry, or boolean equation

entry. Once the design was finished, it can be processed, and a JEDEC file is produced.

The JEDEC file is a file with the standard data transfer format from the design system

to the hardware programmer unit. An EPLD can be physically configured by a "hard-

ware programer" with the JEDEC file as input.

Externally, the EP310 provides 10 dedicated inputs. One of which may be used as

a synchronous clock input. Eight 1 0 pins, shown in Figure IS, may be configured for

input, output or bi-directional operation.

Figure IS shows the complete EP310 block diagram, and Figure 19 shows the basic

EP310 macrocell. The internal architecture of a microcell is organized in a sum of pro-

ducts (AND-OR) structure. Inputs to the programmable AND array, shown running

vertically in Figure 19, come from two sources:

I. The true and complement of the 10 dedicated input pins.

2. The true and complement of 8 feedback signalk. each one originating from a 1 0
Architecture Control Block.

The 36 input AND array, as shown running horizontally in Figure 19, is called the

product term. There arc S identical macrocells in an [,1310. Each macrocell has 9

product terms. Therefore. the total number of product term is 72.

35

SCHEMICPOESRFNTNA

NElLISF ENTR'(nC

DOGLEFILE

EQUATION ENTRYPOCSO

S-1 Al C LES0,1
PROGAE

MA*CI IE ElITRY

EPRYVI

Figutre 17. BLOCK diagram of EPLI) design enmironnient

CLOCK

SNr,

I

voLOGIC ARRAY MACnOCELL AACHITECTURE to
ODNTROL

Ll I i I I I I I I FEEDBACK

I tW4

"ESE I CLEAR CL ,,K

A

MINT rLfAP LOCK

'RESET CLEAR CLO,:K

'RESFY CLEAN CLOCK

-13 Fl CL T- CA r)r.

fff "I

12

-EMT CLW CLOCK

AS,-j- El
CLFAn

Figure 18. EP310 block diagram: [From Ref. 61

3 7

- -- - - - - - - - - - -

1i ---- - -'I-- -- -ID

, ,,1,_ I I

-ID 0.

-D--

I--------- --------------l I S ~I

11 1 'i 1 1b is 14 0

Note: D I/O Pin in which Logic Array input is from feedback palh

This diagrati shows one of tho eight Mucrocells wilhiti, the EP3tO.

Figure 19. EP310 macrocell [From Ref. 6

At each point of intersection in the product term, as shown in Figure 19, there exist

an EPROM type programmable connection. Initially, all connections are made. This

means that both the true and complement of the inputs are connected to. each product

term. Connections are opened, according to .EI)EC file during the hardware program-

ming process. Therefore, any product term can be connected to the true or complement

input signals. When both the true and the complement connections of any input are left

intact, a logical false results on the output of the product term. If both the true and
complement connections of any input arc programmed open, then a logical "don't care

results for that input. If all inputs of a product term are programmed open, then a

logical true results at the output of the product term.

As shown in Figure 19, the outputs of 8 product terms are ORed togther, and the

output of the OR gate is fed as an input to the 1.0 Ar,.hitecture Coiitrul Block. In the

3S

I, 0 Architecture Control Block the signal from the OR gate is configured for register

or combinatorial operation via Output Selection Switches. Both types of operations can

produce inverted output. The feedback mode of the I;O Architecture Control Block can

be programmed as combinatorial feedback, registered feedback, IO (i.e, directly from

the pin), or none, via the feedback selection switches.

Besides the normal macrocell product terms, there are additional Synchronous Pre-

set and Asynchronous Clear product terms. These product terms are connected to all

D-type flip-flops. When the Synchronous Preset product term if asserted HIGH, the

output of the register will be loaded with a HIGH on the next LOW to HIGH clock

transition. When the Asynchronous Clear product term is asserted HIGH, the output

of the register will immediately be loaded with a LOW independent of the clock. An

asynchronous clear assertion overrides a synchronous preset asseration.

B. DEFINE THE PROBLEM

Since an EPLD device is programmable, its configured structure varies with different

implementations. It is desirable to model an EPLD device in VIIDL so that it is inde-

pendent to the design environment. i.e. does not depend on the design tools. The model

can read in a user created JEDEC file, and configure its internal connection to perform

the user specified function.

Besides the correct functional simulation, a model must also provide the correct

timing simulation. When the timing of the model is violated due to register timing re-

quirement. or bus collision, the simulator should be able to warn the user and report

where the error occurred.

C. DECOMPOSITION OF THE EP310

In this research, a hierarchical structure approach was used to model the EP310.

The top of the hierarchy is the EP310 itself. Based on Figure 18. the components in the

next level down in the hierarch% are the Logic Array Macrocell, 1 0 Architecture Con-

39

trol Block, and the tri-state buffer. Below the Logic Array Macrocell is the Product

Term. Except for the tri-state buffer, all the other next level elements are declared as

components in the EP310's architectures as shown in Appendix A. The Logic Array

Macrocell can be decomposed into 8 Product Term components. The ,O Architecture

Control Block can be decomposed into the D-type flip-flop, the Output Select Unit, and

the Feedback Select Unit as shown in Figure 19. Here, only a D flip-flop is constructed

as a component below the 1:0 Architecture Control Block. The Feedback Select Unit

and the Output Select Unit are implemented directly inside the LO Architecture Control

Block.

Besides these 4 components, the EP310 model also need a place to keep the timing

parameters and a function "READ_310" to read in the JEDEC file. All these EP310

dependent functions and parameters were put into a package called EP310_PACK as

shown in Figure 20.

Functions to convert the types are needed whenever different type signals are passed

between different entities. A resolution function to resolve the multiple-source signal is

also required. Because of the general usability of these functions for all parts of the

EPLD, these functions are put into a package called EPLDPACK, which is visible to

all the necessary components as shown in Figure 20.

D. ESTABLISH DATA FLOW

After the hierarchy of an EP310 was established, it is necessary to reveal the signal

flows between different components at different hierarchical levels. Externally, the

FP310 chip can only see 18 data pins. Ten of them are input pins and the others are

input output pins. These IS data pins are the data path between the outside circuit and

the EP310 internal components. Beside these signals, an EP310 model must also receive

a JEDEC file from the outside to simulate the designed behavior. This is done by

passing JEDEC file data through a generic port to the simulated entity.

40

As discussed previously in this chapter, the Logic Array Macrocell has 36 signal

lines which are derived from 18 data pins. In the VHDL model, instead of using 36

signal lines, only IS data lines were fed into the Logic Array Macrocell. These IS data

lines corresponding to the 18 data pins on the EP3 10. Doing it this way helps to reduce

the excessive internal signals in the VHDL. The EP310 depending on the I/O architec-

ture configuration can output signals through the input.'output pins.

The Logic Array Macrocell accepts 18 input signals and produce two internal

signals. One is the tri-state buffer output enable, and the other is the ORed signal fed

into the I'0 Architecture Control Block. The Logic Array Macrocell must also receive

the corresponding JEDEC file information, i.e., 8 product term for each row of JEDEC

file data.

There are three input signals to the I 0 Architecture Control Block, one from the

Logic Array Macrocell, one from the dedicated input pin (serve as synchronous clock),

and the last one from the 1 0 pin. The I 0 Architecture Control Block outputs two

signals. one is the feedback signal, and the other is fed into the tri-state buffer. The 1 0

Architecture Control Block must also receive the corresponding JEDEC file information

that used in configuring the switches in the two select units.

For a D flip-flop there are four input signals. One is the clock which is from the

dedicated synchronous clock input pin. -he second one is the synchronous preset which

is from the synchronous preset product term. The last one is the asynchronous clear

which is from the asynchronous clear product term. Although, there are no program-

mable connections in the D flip-flop, the .EDEC file informations is still needed to dis-

able the assertion mechanics inside the D flip-flop, which will be discussed in the

REGISTER TIMING section.

I he Product Term was used inside the Logic Array \,acrocell and the LP3 10. The

Product Term has 1S inputs signals passed from the next higher hierarchy level and

41

EP31O0 package EPLID ,rrage

Timing parameter Type declaration

Funcion:Function:

Read9-EDEC Type-converter

Checkpterm

(Visible to all EP310 components)

Figre20 Dcopoed Contro hiraliclblckdkga

10cnto

produce one output signal. The Product Term must also receive the JEDEC file infor-

mation from the next higher level entity in order to perform the user specified functions.

Figure 20 shows the decomposed hierarchical block diagram. As discussed above,

the EP310 consists of 4 components, Logic Array Macrocell abbreviated as Macrocell,

I 0 Control Architecture Control Block abbreviated as 10_control, Product Term ab-

breviated as P term, and D flip-flop abbreviated as D-register.

The binding of component to entities is performed by configuration specifications.

The configuration performs a component selection kind of function. With this feature,

interchange of components from different technologies are possible. As discussed in

Chapter II, VHtDL configuration specifications appear in the declarative part of the

block where the corresponding component are called. In certain cases, however, it may

be more suitable to leave the configuration unspecified and defer such decision until the

Kernel is built [Ref. 4: pp.l-9].

E. SIGNAL ASSIGNMENT

There are two ways to assign signals. One is to gather signals with common prop-

erties in an array. The other is to treat the signals separately. The benof it of using a

signal array is its simplicity. But, there is a drawback. That is, each time when one of

the elements in the array is activated, the whole array is activated. The processes asso-

ciated with the elements of the array will be activated too often in a complex design.

This costs a lot of simulation time. On the contrary, the single signal assignment may

be more efficient in reducing the simulation time. But, it will make the model complex

and hard to comprehend. In this study. the EP310 data pin signals are defined sepa-

ratelv in order to reflect the real chip pinout; the rest of the signals are implemented by

uing the signal array.

43

F. JEDEC FILE INFORMATION TRANSFER

As mentioned before, the EPLD model needs to read in the JEDEC file information

in order to perform the designed function. There are three methods to transfer the

JEDEC file information from outside to an entity model:

1. Assign information via generic.

2. Passing information via port.

3. Passing information by predefining it as a constant in the package, and make it
visible to the entities.

Since the JEDEC file depends on the user's implementation, it can vary. It is not

a good approach to declare the JEDEC file data as constants inside the package. If

signals were used to transmit the JEDEC file data, the total number of signals including

the implicit signals will be too large. This will affect the total simulation time, since ev-

ery signal driver of this large set has to be checked at each delta cycle.

Due to the reasons discussed above ind the nature of the JEDEC file, passing in-

formation via the generic is preferred. In this research, using generic to transfer JEDEC

file information were adopted. The JEDEC file name is fed in via the EP310 generic at

one level higher than the EP310 entity. In the EP310 declaration part a function called

READJEDEC is used to read in the necessary JEDEC information. An example of

using generics to pass the JEDEC file data to EP310 entity is illustrated on the next

page.

44

- - inside package EP310_PACK declaration.

function READ_JEDE(file_name: in string)

return jedec-file_data;

-inside the TESTBENCH body.

architecture demo of test-bench is

component EP310 generic(JEDEC_file..name);

port(pinout..specification);

-- other statement.

begin

EP310 generic map(user defined_JEDEC~file)

port map(pinout.specification);

-other statement.

end

-- inside the EP310 entity body

architecture STRUCTURAL of EP310 is

constant BITHAP : jedec-file-data

READ-JEDEC("JEDEC-file-name");

The constant "BIT IAI"' is declared to have a "jedc file-data" type, and its value is

asigncd bv the returned value from the function READJEDEC. After thc BIT_ MAP~

45

is initialized, its subcomponents are passed via generics to the corresponding compo-

nents below the EP310. Note that the "jedecfiledata" type is not defined here. Refer

to Appendix A for the actual declaration and the exact program.

G. MULTIPLE LEVEL LOGIC

Because not all pins on the chip will be used, it is necessary to introduce a signal

with three-level logic to represent the unconnected situation. The EP310 model uses a

new type TRI, which as shown below has a three level logic: '0', "1' and 'U'.

type TRI is ('U','0','1');

The 'U', depending on the location of the signal, means unconnect or undefined.

Since the VHDL is a strongly typed language, when constructing a multiple state

design. it is necessary to include a type conversion function to pass different type signals

between different processes. The following is a conversion function example used in the

EP310 model.

function tri to bit(inbit: tri) return bit is

begin

if inbit= 'I' then

return 'I';

else

return '0';

end if

end bittotri;

Note that. the conversion function will return a value '0', if the input is 'U'.

46

11. BUSSED SIGNAL

Shown in Figure 21 is all example where the signal "local" is driven by two sources.

The sources of the signal "local" can come from the output of the tri-state buffer or from

the "io-pin". Below is the statement that can model this connection.

local<= output after tod when enable='l' else

io-pin after tio+tin; --tio+tin is input delay

OE (output enable)

enable

11
output ,i i

signal from
output select unit I/0 pin

4 local

"local" input
to feedback select unit

Figure 21. 1/O primitive signal flow diagrtam

Note that the statement above has implied that the "output" signal has higher pri-

ority then the "iopin" signal. 'This is reasonable, since the "output" signal drives not

only the "local" sienal but also the "i_pin" signal. Only when the tri-state buffer is

di5abled, will the "io pin" signal value be assigncd to the signal "local".

47

As mentioned before, the "iopin" is a bi-directional pin driven by two sources, one

is the tri-state buffer output, and the other is an external user input. It is driven in a

time multiplexing sense. In order to model this circuit, it is necessary to declare the

"iopin" signal as a resolved signal. A resolved signal is a signal that has an associated

resolution function. Resolution function is a user defined function that computes the

value of a resolved signal form its multiple sources.

There are two ways to declare a resolved signal. One is by adding a resolution

function to the front of the type, such as:

signal io-pin: inout RESOLVER tri;

The other way is to declare the signal with a resolved subtype, such as:

subtype tri-state is RESOLVER tri;

signal io-pin: tristate;

The resolution function used here is called the RESOLVER. Basically, the RE-

SOLVER will eather all the sources of the declared signal, compute it according to uscr

defined rules, then return the resolved value. Below is the implementation of the func-

tion RESOLVER.

function RESOLVER(signal inputs: tri.vector)

return tristate is

variable resolved-value: tri state:='U';

variable flag: integer:='O';

4S

begin

for i in inputs'range loop

if inputs(i)/='U' then

flag:= flag + 1;

resolvedvalue:= inputs(i);

end if;

end loop;

assert flag <= 1

report "iopin bus collision."

severity FAILURE;

return resolvedvalue;

end RESOLVER;

In the signal assignment statement the iopin is assigned as:

io-pin <= output after tod when oe = '1' else

'U' after tod when oe= '0' else

'U';

Note that if the corresponding tri-state buffer is enabled, i.e., oe= 'F1 and. in the mean-

time, the user gives iopin another assignment from the top entity, then the signal will

have two active sources. It means that the source values are not all 'U'. In this case,

the resolution function shown above will assert the data collision message. On the other

hand. if only one source is active, the resolution function will output the active source

value and assign it to the iopin without the violation message.

1. PRODUCT TERM INTERNAL CONNECTION

As mentioned previously the EPLD logic array has programmable internal con-

nections. The connections were made according to the corresponding JEDEC file spec-

49

ification. In this research a function, called checkPterm, is used to generate the correct

functional output. The checkPterm function has two type of inputs:

I. Eighteen signals from the feedback lines shown in Figure 19.

2. Thirty-six internal connection specification defined as Pstring from the JEDEC
file.

The checkPterm function generates the correct value according to the specification and

the conventional logic array rules discussed in the previous section. The main mech-

anism of this function is to decide whether the input signal should be included by ex-

amining the true and complement connections of the signal in the JEDEC file. Shown

below is a portion of the decision statements used in the checkPterm. The statemens

are written in VIIDL alike pseudo code. Refer to the package EPLD_PACK of Ap-

pendix A for the full exact detail:

-- begining of the decision statement.

output: = ' 1';

i: =1;

while i<=P-string'length loop

if(Pstring(2*i-l)='O' and P_string(2*i)= '1') and

(input-signal(i)=U' or inputsigna(i)= 'l') then

output:=' '

exit;

end if

-- other decision statements.

end loop;

return output;

-lhe "P_strinP" in the above example is an array which contains the progranmmable

AN) array internal connection data. The statement "P string (2'i-1()=' and

50

P-string(2*i)= 'I' " will check the connections to see whether only the complemented

connecting point shown as Pstring(2*i-l) exists. If the complemented connecting point

exists and if the corresponding "inputsignal(i)" is '1' or 'U' (unconnected), the output

will be '0'. With statements similar to the above example, the other three situations are

checked to produce the correct output. These three situations are: a) both the true and

the complement connecting points exists, b) both points do not exists, or c) only the true

connecting point exists. See the function checkPterm of Appendix A for the details.

J. EPLD TIMING SIMULATION

As discussed in a "EPLD timing simulation" paper [Ref. 7], the timing diagram of a

general EP310 is shown in Figure 22. The delay time through logic array (tlad) was

modeled as a constant. The rest of the timing parameters were like those found in the

conventional logic circuit. Below are the description of the timing parameters shown in

Figure 22.

1. tin- input pad and buffer delay.

2. tio- 1 0 input pad delay. This delay need to b2 added to tin when an 1 0 pin is used
as input.

3. tod- output buffer and pad delay.

4. txz- time to tri-state output delay.

5. tzx- tri-state to active output delay.

6. tlad- logic array delay.

7. tlade- enhanced logic array delay.

8. tsu- register setup time.

9. th- register hold time.

10. teir- asynchronous register clear time.

11. telre- enhanced asynchronous register clear time.

12. tics- system clock delay.

13. tic- clock delay.

14. tice- enhanced clock delay.

15. tfd- feedback delay.

51

iripur SYSTEM CLOCK DELAY tw nEGISTER
DELAY -01 CLOCK DELAY tH OUTPUT

ti __1 tic tics o txz

-. LAD tLAM

I/O FEEDBACK
~ IELA P___________ U DELAY

t 10

iguie 22. EPLD timing block diagram Irrom Ref. 7

16. tell- mnimum clock duration, when clock is high.

17. tcl- mninimum clock duration, whenci clock is low.

Sine a 1l310 is dccomnposcd into four componlents shown, inl F7igure 20, it is nec-

essary to assign each component with its associatcd timing parameter. Figure 23 shows

the decomposed components wvith thecir timing parameters. All the timing parameters

used inl this research canl be foundJ in [Ref. 71.

1. REGISTER TIMING

The most impoitanit timing problem related to a register is its setup time, hold

timne, and minimumn pulse wvidth. 17or example, consider flic clocked register in

17igure 241. It is a common requirement that the data iniput be stable for a duration of

time prior to the clock transitionl that strobes the data into the register. This require-

mnot is know,-n as the sm up tim, 0- the data relative to the clok. A simillar requtircement

52

EP31 0

tin, tio, tics, tod

8 components 8 components

MACROCELL I/O (10_CONTROL)
CONTROL ARCHITECTURE

2 components:
t, ,1 clear pterm

preset p term tfd

9 components: one component
8 general p_term per I/O control
1 tristate output architecture
1 enable pterm

PRODUCT TERM D TYPE FLIP-FLOP
(P_term) (D_register)

no timing parameter th, tsu, tch, tc!

Figure 23. EP310 hierarchical block diagram isith time parameter

states that the data should remain stable a minimum amount of time after the clock

transition which is known as the hold time requirement.

Figure 24 shows the input specifications for the register in a typical EPLD. The

specification says that (1) DATA should be stable for tsu nanoseconds before CLOCK

rises. (2) DATA should be stable for th nanoseconds after CLOCK rises, and (3)

(s y n chron ous)

from ORodD

p _term

from dedicated

input pill (pi 1)

F(asynchronous)

syNctflnor~us CLOCK MODE

CLK

i1rj I oil 1/O MAY, CI IAIJGE VALID~ IPUT on /O MAY CHANGE

Fig~ure 24. D register timing diagram

5-

CLOCK should have a minimum duration at the high level of at least tch nanoseconds.

The following assertion statement in VHDL checks the setup time specification of the

D register of the EP310:

assert not(not clk'stable and clk='l' and (not d'stable(tsu)) and

clear='O' and (03='O' or 04='0' or F2='0'))

report "Setup Time Failure";

Using the DeMorgan's theorem, one could convert the assertion statement to a simpler

form

assert ck'stable or ck='O' or d'stable(tsu) or clear='l' or

(03='l' and 04='I' and F2='1')

In the above example the attribute D'STABLE(tsu) will be TRUE if and only

if signal D has been stable for tsu time units already. Since this D register has an

asynchronous clear, it is necessary to include "clear= '0"' in the assertion statement.

Otherwise. when the "clear" is set to one, the D register will resume the synchronous

clock cycle and produce the errorous result. The reason for checking the switches 03,

04, and F2 in Figure 19 is to see if the register is selected to operate. If the macrocell

is dedicated to perform combinational logic, then the assertion will be disablcd.

55

(not clk'deley(th)'stable) and c1k'de18y(th)*O'

(not clk'stable) ond clk=*0'

ts s t~bIeth)

Fifgure 25. 1Hold time timing diagram

The h1o11 time can be checked by using the following VI IDL statement:

assert ck'delayed(th)'stable or ck'delayed(th)=&O' or d'stable(th) or

clear='l' or (03='l' and 04='l' and F2=&l')

report "Hold Time Failure";

Thc statenit wvill check the stabilitv of data "d- after the neccssarv hold time (th). The

hold time start from the rising edlge of the clock and end at the falling of the clock as

showXn inI Fir-ure 25. If the evaluation of the statement are false then the error will be

repI "ted, 'AllL11 In)cMns 11he H1114101) lIdI time is not Sat':Sf1.J

Similarly, the minimum pulse-width can be checked by using the following

statement:

assert ck'stable or ck='1' or ck'delayed'stable(tch) or (03='l' and 04='1'

and F2='l')

report "Minimum pulse width failure";

K. COUNTER

An EP310 was configured to implement a 7-bit counter. The JEDEC file was gen-

erated by using the Altera logic design tool. The model was tested as a 7-bit counter.

The simulation starts from a top entity called the "TESTBENCH". The code of the

"TESTBENCH'" and its architecture body are shown in Appendix B. The simulation

result are also shown in Appendix B. Basically. the "TESTBENCH" calls the EP310

entity, provides the signals to the EP310's input pins, and the the external JEDEC file

name to the EP3lI 's generic. The user can control the simulation time via the generic

of the "TEST BENCH".

IV. MODELING THE EPI800

A. INTRODUCTION OF THE EP1800

The EP1800 like the EP310 discussed in Chapter III is also an Erasable Program-

mable Logic Device with a larger number of macrocells. In the EP310 there are about

300 gates, but in the EP1800 there are about 2100 gates [Ref. 6: pp. 2-4]. The EP1800

has a classic programmable AND array just like the EP310. But, unlike the EP310

which has only one D-type flip-flop, the register inside the EP1800 can be programmed

into a D-type. T-type, JK type, or RS type flip-flop. Each register can be clocked

asynchronously on an individual basis or synchronously on a banked register basis [Ref.

6: pp. 2-6].

The block diagram of an EP1800 is shown in Figure 26. Externally, the EP1800

provides sixteen dedicated data inputs, four of which may be used as the system clock

inputs. There are 4S 1, 0 pins which can be individually configured to be input, output,

or bi-directional pins.

Internally, the EP"S00 contains 48 macrocells. As shown in Figure 27 and

Figure 28, each macrocell contains three basic elements: a logic array, a selectable reg-

ister element, and a tri-state I 0 buffer. All the combinatorial logics are implemented

within the logic array. For register applications each macrocell provides one of four

possible flip-flop operations: D, T, JK, and SR.

The EPISO0 is partitioned into four identical quadrants as shown in Figure 26.

Each quadrant contains 12 macrocells. The macrocell input signals come from the

EPI800 internal bus structure. The macrocell output may drive the EP1800 external

pins as well as the internal buses. Sixteen of the EPl800's 48 macrocells ol'er increased

speed perlormance through the Logic Array. -hese "Enhanced Macrocell can be uti-

58

OUADPANT A QUADRANT D

uA7'cu i. - (1 ,0

10 U ACFLOCEI 4V.- MALAOCELL 4 -C I/O

I/O rIA ' ACPOCEtL 2 CACROCIFL. 4U - = f

I/~ MACI3OCELL 36 MACROCIELI 431 -C I/O

I/O gZ-- OOACILOCIEI 4 MACRocEI.I 40 --- = O

"0 1=3 LAACROCIELI 50 MACROCIELL 34 V IO

I/O 1= UACIW)CELL '2 MAC5L0CELL43 --- = V

a 0111 0 13 IVI
1?FU MACROC--- -2 --. t

117U C J.- - A~~rL 7 1,11)W
9 15,

MANnUTrELL SO: 41ARCEL 1v
NUT~W (,0 0

0o r::!- MACROCLL 30 O-- ACROCLL 39 "0

,o PZ~ ACnO~rL 114MCOEL3 ,
I 1131-

"00 MACPOCEI.L 12 MACnOCELL 31 C 100

1.01l
1,0 ~ MAC41YEL. 7 ACROELINPUT/

1"OAS%

0 _LSNU00 P ACLI0ELL2 0 871RCEL . .00

m,0 CID- '. -'2TC12 ---- = INPUTLL7

IvcC ------- - ~ = ~
-Iq11

Il,1

J'O 9=4-t- M~cGENERAL13 AACROCELL FS"

MAI PEREAI To 1PNrG 07075OOA MACROCELLS m

E:Z; ~ ~ ~ MAnO L. O t ACRO OCE L S=

Fig~ire 26 [P1800 blc hga [rmRf

OUCA.CX

___ GL__OBAL BUS LOCAL. BUS SEIL1CT

-2 ~____
" Of

INJ I G'.DQ F I[O .,

Figure 27. Local ma..roce.ll [FomRe'.6
pe. A

CXIAAA

Figure 27 ocalr mite GaacrocellsRf 6] tcnpoiedalfntos hs

Go.MacrocellrecEPSOaanas shown in Figure 26.imAleeetaiured ogcuctosadeay tesmne

pendixTE A.1 C LC.

::me° serve as dedicated input pins. Thus, the EP1SOO may have an additional 16 input

pins yielding a total of 32 inputs. The Global Macrocells have the same timing charac-

teristics as the General Macrocells [Ref. 6: pp. 2-?].

Each of the EP1SOO internal flip-flops can be clocked independently or in user-

defined groups. Any input or internal logic function may be used a clock. These

clock signals are activated by driving the flip-flop clock input with a clock buffer primi-

60

c~r' cf OC
O'flBM. SUBL But -- I -

-

.1 1 ---- 0 -

6 D D- AD C'C, OCfl)- ,

- O1ft .

edge~~L~.A outeedoeatos

OLDB4. Pus

A. R.AI SUB tCA

(.A O'VlSAN "ap"VK

~ S~~JIS) !FDRACJI ,2 M.'OCJ

Figure 28. Global niacrocell: [From RcFL 61

tive (CL-KB). In this way, the flip-flop can be configured for either positive or negative

edge triggered operations.

Four dedicated system clocks, CLK I through CLK4, provide clock signals to all the

flip-flops. System clocks are fed directly fiom the ElII 800 external pins. With this dircct

connection, a system clock imposes the shortest delay than internally geneicated clock

signals. There is one system clock per EPI 800 quadrant. When using system clocks. t]le

flip-flops are positive edge triggered, i.e., data transitions occur on the rising edge of teIC

clock.

B. DECOMPOSITION OF THE EPI8UJ

Just like the EP310, the hierarchical structure approach is used to decompose te

EPIS00. The top level is the ElII800 itself. Based on Figure 26 the next level down 11

the hierarchy are the Quadrants. Below this level is the Global Mlacrocell and the Low

61

Macrocell. The hierarchical levels lower than macrocells are similar to those structures

in the EP310.

The EPI800 model also needs a function READJEDEC to accept the JEDEC file

and a few other necessary functions to implement the real physical device. All these

functions together with the timing parameters and the defined types are stored in a

package called EP1800_PACK as shown in Figure 29.

The EP1800_PACK and the EPLD packages discussed in Chapter III are visible to

all the necessary components. The total EP1800 hierarchical structure is illustrated in

Figure 29.

C. ESTABLISH DATA FLOW OF THE MODEL

After the hierarchy of the EP1800 is established, it is necessary to identify the signal

flows between different components.

Looking at an EP1800 chip from outside, only 60 data pins and 4 dedicated system

clock pins are visible as shown in Figure 30. Therefore, at the top level of the entity

EPI800, there are 64 signals in its port declaration. These 64 signals serve as the signal

paths between outside circuit and the EP1800 internal components. Besides these

signals, an EP1800 model must also receive a JEDEC file from the outside to simulate

the user-designed behavior. This is done by passing the JEDEC file name through a

generic port to the simulated entity just like the method used for EP310.

Inside the EP1800 entity, there are 4 quadrants. These 4 quadrants are symmetric

in some sense, i.e., two of them are upside down. Therefore, there is only need to build

one quadrant model, The remaining quadrants can be implemented by using the model

directly or modifying the generic with the reverse function. The details are described in

the EPIS00 architecture body of Appendix A.

62

EPlOQO package EPLD package

Timing parameter Type declaration

Functioni:Fucin

ReadJEDEC Type_converter

Inverter Checkpterm

Find

(Visible to all EP1800 components)

EP1800

Locil-mcrothe Global_macrocell

the components
E D~reisterbelow the

Local macrocell
on the left)

Figuire 29. EPISO0 hieraichical nmdel diagramn

63

C

vo ! 51 .0
so "0

VWVT {3'S S, NI
'

PISWT . -PUT

U iL L U U jU UU UUUI

Figure 30. EP1800 chip oveniew: [From ReW. 6]

The signals going into each Quadrant include the global bus inputs and a system

clock input. Four of the Quadrant output signals are from the Global Macrocell tri-

state buffer outputs. The rest of the 8 signals are bi-directional General Macrocell 1 O

pins.

There are 12 macrocells inside each Quadrant. These macrocells are classified as

Global Macrocell, General Macrocell, and Enhanced Macrocell. The structure of the

General Macrocell is the same as the Enhanced Macrocell. The only difference between

these two macrocells is that the Enhanced Macrocell has a shorter time delay. There-

fore, when modeling the EPISOO, it is only necessary to build the General Macrocell

modules and the Global Macrocell module. The Enhanced Macrocell module can be

yielded by changing the timing parameters of the General .Macrocell.

The macrocell accepts bus inputs and a system clock input. The bus inputs consist

of 44 input signals. The macrocell outputs consists of two signals. One comes from the

64

I'O Architecture, and the other is a tri-state output enable signal. The internal struc-

tures of the Global Macrocell and the General Macrocell are identical except that the

General Macrocell has a feedback select switch and the Global Macrocell has an output

enable switch. The total numbers of signal-flow control switches are the same in both

type of macrocells.

The 1:0 architecture in the macrocell accepts the ORed logic array signal, an input

clock signal, and a register clear signal. The ORed logic array signal is generated from

8 ORed logic-and-arrays similar to those in the EP310 structure. The input clock signal,

depending on the clock select switch, is either from the quadrant synchronous clock or

from the enable clock logic-and-array output.

The internal structure of the 1 0 architecture consists of a D-type flip-flop, logic

gates. and 3 signal flow control switches. Because of the non-disclosure aggreement with

the Altera corporation, the detail structure inside the ,O architecture is not discussed.

In Appendix A, the 1'0 architecture module of the EPI800 only shows the entity dec-

laration part.]

All the EPISO0 internal connecting point information in the JEDEC file are passed

to the entity via the corresponding entity generic. The parameter in the generic of

EPISOO is a character string which can be any user-created JEDEC file name. After the

JLDEC file name is passed into the body of the EPI800, the function READJEDEC

will read in the JEDEC file data stored in the JEDEC file name. The function will assign

this composite type (EPISOOTYPE) JEDEC file data to a constant call BITMAP.

Then, like that done for the EP310, the corresponding elements of this composite con-

stant are passed to the corresponding lower level components. For more details please

see Appendix A.

I For more information please contact Prof. CIIIN-IIWA LE, Naval Postgraduate School,
Nontcrey, CA 939-43.

65

D. GENERAL MACROCELL AND ENHANCED MACROCELL

As mentioned previously, the General Macrocell and the Enhanced Macrocell have

the same structure but different timing parameters. In order to make the model size

more compact and to avoid the redundant VHDL program, these two types of macro-

cells use the same architecture body. The way to define whether the macrocell is a

General Macrocell or an Enhanced Macrocell is by passing different timing parameters

via generic. For Enhanced Macrocell this would look like:

ENHANCED: LOCALMACROCELL generic map(PARRAY(I to 10),

I0_ARRAY(1), tlade, tclre, tic)

where the "tlade", "tclre", and "tic" are the enhanced timing parameters. The

"PARRAY" and the "10ARRAY" are array types. They contain the corresponding

product terms and 1, 0 select unit JEDEC file data. The word "enhanced:" in front of

the localmacrocell is referred to as the label of this component instantiation. If there

are more than one identical component instantiation in the same block level, the labels

with different names must be used in front of these instantiations. The General

Macrocell and Enhanced Macrocell have the same expression but different generic val-

ues, i.e., the timing parameters.

E. THE REUSABLE QUADRANT MODEL

Although the Quadrants inside the EPISO have the same structure, the pin assign-

ment combined with the ordered JEDEC file data makes the generic map assignment of

Quadrant-B and Quadrant-C in the reverse order. In order to reuse the same Quadrant

model. in this work, two "reverse functions" are built. Both "reverse functions" can re-

vcrse the order of the input array. Below is one of the reverse function used in the

EPISO model.

66

function REVERSE(A: in IOarraytype) return 10

_array type is

variable rev array: 1Oarray-type(1 to A'length);

variable c: POSITIVE := 1;

begin

for i in A'REVERSERANGE loop

rev_array(c): = A(i);

c: = c+l;

end loop;

return rev-array;

end REVERSE;

.Note that the attribute "A'REVERSE_RANGE" will output the A's range in the reverse

order. That is, the attribute will have the range ARIGHT domwnto A'LEFT if the range

of A is ascending, or ARIGHT to A'LEFT if the range of A is descending. These two

reverse functions are put into the package EPISOOPACK.

When using the Quadrant B and C, the reverse function is placed in front of the

generic parameter P array, and 10_arrav as follows

QUADRANT B:

QUADRANT generic map(REVERSE(P array(range)),

REVERSE(IOarray(range)))

-- port map specification

Note that the variables inside the above two REVERSE functions have different types.

In spite of the different types of this two arrays, the VIIDL will automatically find the

67

corresponding matching function according to the input parameter type. In VHDL this

kind of functions are called overload functions.

F. THE EP1800 BUS STRUCTURE

The internal bus structure of the EPl800 is more complicate than that of the EP310.

Basically the EP1800 bus can be divided into two kinds, local bus and global bus. The

local bus, as the name implies, only provides a signal path between macrocells within the

same quadrant. The Global bus on the other hand provide the signal path to all the

macrocells inside the EPI800 chip.

The local bus consists of 12 feedback signals from 12 macrocells as shown in

Figure 27 and Figure 28. These local feedback signals can only feed into the macrocells

of that quadrants and cannot be accessed by the other quadrants. The local bus has two

kinds, one is from the Global Macrocell I O Architecture output, and the other is from

the Local Macrocell feedback. The local bus from the Local Macrocell feedback has two

sources, one is from the 1. 0 Architecture output and the other is from the I, 0 pin.

Which one of the two sources to use is decided by the feedback select switch as shown

in Figure 27. This switch is configured by the JEDEC file data.

The global bus can be divided into two classes, one is for the Global Macrocell

feedbacks and the other is for global dedicated input pins. The Global Macrocell feed-

backs come from each quadrant's 4 Global Macrocells as shown in Figure 26. Since

there are four quadrants, the total global feedbacks are 16. The global bus can be ac-

cessed by any macrocells within the EPI800.

The EP1800 bus signal assignments are done at two entity levels. The global bus

signals are assigned at the E1O1800 entity level as shown in the EP1800 architecture boL

of Appendix A. The local bus signals are assigned at the Quadrant entity level as shown

in the Quadrant architecture body of Appendix A. The global bus and local bus are

concatenated togcther at the Quadrant entity level as follows

6S

inputs K= localbus & globalbus;

where the symbol "&" means concatenation. Here, this statement will connect the sec-

ond array "global bus" right after the first array, and form a new array "inputs". This

new array will be fed to the macrocells.

G. UP-DOWN COUNTER

An application simulation of the EP1800 model was done in this study. The model

was implemented as a 16 bits up/down counter. The counter was constructed by cas-

cading two 8-bit counters together. The 8-bit counter used here was adopted from the

ALTERA's TTL Macrofunction library [Ref. 81. Figure 31 shows the 16-bit up-down

counter block diagram and its corresponding function table.

The simulation was done by running a top entity discussed in Chapter 11 called the

"TESTBENCH". The code of the "TESTBENCH" and the corresponding result are

in Appendix B. Basically, the "TESTBENCH" will call the EP1800 chip and provide

the signals and the external JEDEC file name via the port map and the generic map to

the EPISQO. The JEDEC file can be created by any EPLD development tool as dis-

cussed in Chapter Il1.

69

8 C010I2

LOAD

DS UT OUTPODUTS

L ~ ~ ~ --- X XN HH dids. dzi d 015 dd
L~[u LCOLUNTTP

L ~~~ H X L OLOOUT
L L H L H H H

L9 A.L LL L L

dlS 6 dF d ee fsed-aeipta nus0 0 0

01170

V. CONCLUSIONS

A. GENERAL

In this thesis the general VHDL language features were introduced first. Then, the

discussion of the EP310 and EPI800 structures leads to the modeling of these devices.

Study revealed a number of problems in modeling these EPLDs. The solution of these

problems were de. -ribed and tested. The modeling technique used for EP310 and

EPI800 can be equally applied to the modeling of other types of EPLD with similar

structure.

It is very difficult to verify the model's accuracy. One way to verify the accuracy

of the model is by -nning the manufacture's hardware test vectors for the corresponding

hardware [Ref. 9]. Since the manufacture's test vector is not available , in this study only

tile correctness of the individal modules ar,' tested. If all the modules can work accu-

rately, the whole model can also work accurately.

The EP1800 and the EPIS10 have a sinilar structure. The only diffierence between

them is that the general macrocells in an EP1800 were replaced by the Enhanced

Macrocells in the EP1810. The model of EP1800 with diffierent timing parameters can

also be used as the EPI810 model.

After using the VtlDl to model the EPLD hardware, there are a few conments

about the VtIDL language:

1. The VIIDL language is powerful. The VIDL has a very rich instruction set, and
it also has the timing features in it. 'Ihis makes the VI IDL not only a very good
hardware description language but also a very powerful simulation language.

2. The VItDL is verx flexible. The language allows the users to declare their o .i
object types and signal attributes, which makes the modeling aasier.

3T The VI 1)L languace can describe the hardware from three different views: behav-
ioral, data-flow, and structural. The first two views lets the user model the hard-
ware at an abstraction level. The hardware physical description is done at the
structure leWl.

71

4. A hardware description can be detailed and accurate. The contiol statement and
timin2 facilitv discussed in Chapter 11 allows the model to reflect not only the
function of the hardware but also the timing characteristics.

5. The VHDL language statement is easy to comprehend. Since the VHDL is ori-
ginally used as a description language, it allows meaningful variable and signal
declarations. It also allows modules to be declared as functions. This make the
program code more readable than most of the other languages.

6. The VHDL language learning curve is longer than those of the other languages.
As was discussed before, the VHDL has a very rich instruction set. This sometimes
is not a merit to the user, since rich instruction set means user need to take a longer
time to learn more language features and rules.

B. PROGRAM SPEED

Like the other hardware simulation, the VHDL simulation takes a lot of time. In

VtlDL each simulation cycle is called a delta cycle. The simulation is event-driven.

which means whenever any signal changes its value, the simulator will execute the cor-

responding statements once. If the model is too complicated or contains too many de-

tails which used up more internal signals, it will costs a lot of the CPU time. On the

other hand, if the model is very abstract. i.e., modeling at the chip level or system level,

then the simulation time can be reduced considerably.

The models built in this study are gate level models which contain a detailed circuit

description. This means that the models built here need more execution time than the

other approaches. Besides long simulation time, model analyzing, generating and

buildin { processes also takes longer time than anticipated.

The method of simulation developed in this work may not be the optimal one. One

possible way to improve the simulation efficiency is to make the product-term algorithm

more efficient. It is at the bottom of the hierarchy of the EPLD model and has the

highest rate of execution.

In order to save programming time and reduce programming errors, the modeler

should thoroughly decompose the target circuit and establish the interface between all

modules via entity declaration before actually progranmiing the architecture body.

72

C. RECOMMENDATIONS FOR FUTURE STUDY

The study of this thesis is concerated on the EPLD gate level modeling. But, the

VHDL modeling technique and the modules built in this study can be applied to other

logic system designs. The future study can be directed toward establishing a EPLD

component library to support the increasing EPLD implementation in designs.

73

APPENDIX A. VHDL SOURCE CODE FOR EP310 AND EPI800

MODELS

A. VHDL SOURCE CODE FOR EPLD PACKAGE

package EPROMPACK is
type Tri is ('U','0' ,' 1');
type tri-vec is array (NATURAL range<>) of Tri;

function resolver(signal inputs: tri_vec)return Tri;

subtype tristate is resolver Tri;
type trivector is array (NATURAL range<>) of tri_state;

function checkPter(Pstring
string; x
tri vector) return BIT;

function bittotri(i.bit: bit) return Tri_state;
function tritobit(inbit: Tri_state) return bit;
function trivec to -bitvec(inbits: tri vector) return bit_vector;
function bitvec to trivec(inbits: bit vector) return trivector;

end EPROM_PACK;

package body EPROMPACK is

function resolver(signal inputs: tri_vec) return tri is
variable resolvedvalue: tri:= 'U';
variable flag: integer:= 0;

begin
for i in inputs' range loop

if inputs(i)/='U' then
flag:= flag+l;
resolved-value:= inputs(i);

end if;
end loop;
assert flag <= 1
report "iopin bus collision."
severity FAILURE;
return resolvedvalue;

end resolver;

function checkPterm(P-string
string; x
tri_vector) return BIT is

variable P-loc:natural:=0;
variable ou: bit: ='l';
variable i: positive: =l;

74

begin
while i <= P-string' length loop

if(P...strin(i)=&O' and P-string(i+l)='O') then
ou:='O
exit;

end if;
if(P...string(i)='1' and P_string(i+1)='1')then

P-loc:=Pjloc+l;
end if;
-- select the true input.
if(P...string(i)='l' and P-strinf(i+1)&O') and
(x((i+l)/2)='U' or x((i+l)/2)= 0') then

ou:=, ,
exit;

end if;
-- select the com?lement input.
if(P...string(i)='O and P strinf(i+l)='1') and
(x((i+l)/2)='U' or x((i+l)/2)= 1') then

0u='';
exit;

end if;
i: =i+2;

end loop;
if P_loc = ((P..string'length)/2) then

ou:' 1';
end if;
return ou;

end checkPterm;

function bit- to-tri(inbit: bit) return Tn _state is
begin

if inbit='l' then
return '1';

else
return '0';

end if;
end bit-to-tri;

function tritobit(inbit: Tn _state) return bit is
begin

if inbit='l' then
return '1';

else
return '0';

end if;
end tri-to-bit;

function trivec_to-bitvec(inbits: tri..vector) return bitvector is
variable local: bit-vector(inbits'range);

begin
for i in inbits'ranfe loop

if inbits(i)'l then

75

else
locaI(i): =O ';

end if;
end loop;
return local;

end trivec_to-bitvec;

function bitvec-to..trivec(inbits: bit Tvector) return tri_vector is
variable local: tri-vector(inbits range);

begin
for i in inbits ,ranfe loop

if inbits(i)'l then
local(i):& 1'';

else
local(i): ='0'

end if;
end loop;
return local;

end bitvec-to-trivec;

end EPROMPACK;

76

B. VHDL SOURCE CODE FOR EP310 MODEL

package EP310..PACK is
subtype I0.,.string is string(l to 7);
-- 10_string 1 to 7 are switches inside the io architecture;

type 10_array-type is array(1 to 8) of 10_string;

subtype P...string is string(1 to 36);

type P_array..type is array(NATURAL range<>) of P...string;

type EP310_TYPE is record
P..array: P...arraytype(1 to 74);
10_array: 10_array..type;

end record;

-the timing data are for EP3lO.
constant tin: TIME:=10 ns;
constant tio: TIME: =2 ns;
constant tlad: TIME: =27 ns;
constant tod:TIME:=12 ns;
constant tzx:TIME:=0 ns;-- tzx(here) = tzx(table)-tod;
constant txz:TIME:=0 ns;-- txz(here) = txz(table)-tod;
constant tsu: TIME: =10 ns;
constant th:TIME:=lO ns;
constant tch: TIME:l=6 ns;
constant tics:T1ME:=4 ns;
constant tfd:TIME:=5 ns;
constant tclr: TIME: =33 ns;

function READJEDEC(F name
string) return EP3lOTYPE;

end EP3lO PACK;

use STD. TEXTIO. all;
package body EP310_PACK is

function READJEDEG(F name
string) return EP310OTYPE is

file F: text is in F name;
variable temp: line;
variable temp..char: character;
variable IQ..temp: string(l to 2730);
variable EP3lONAP: EP3lO TYPE;
variable flag: boolean :=true;
variable GOOD,Ljflag: boolean:=false;
variable j ,k: integer: =1;

begin
-cut out the unwanted portion.
while flag loop

read line(F ,temp);
read(temp,tern~char);
if(temp..char= *') then

77

L -flag: =true;
end if;
if(temp..char='L' and L_lag) then

flag:=false;
end if;
assert not endfile(F)

report "The input file is not correct";
end loop;

-extract the bit map information.
while not endfile(F) loop

readline(F,temp);
j: =temp. allt length;
10_temp(k to k+j-l):=temp. all;
k:= k+j;

end loop;
for i in EP3lOMAP. p..array'range loop

EP31O-MAP. p..array(i): =10_temp(1+36*(i-1) to i*36);
end loop;
for i in EP310OMAP. 10_array'range loop

EP31OMAP. IQ..array(i): =10_temp(2665+7*(i-1) to 2664+7*i);
end loop;
return EP310_MAP;

end READ_-JEDEC;
end EP3O...PACK;

library EP31OLIB,SHU;
use EP3lOLIB.EP3lOPACK. all,SHU.EPROMPACK. all;
entity EP310 is

generic (JEDEC: in string);
port (pin-l,pin.2,pin..3,pin4,pin.5,pin_6,pin_,pin8,pin_9,pin..lI

:in tri-state; pin_2,pin_13,pin.14,pin.15,pin.16,pin.17,
pin..18,,pin..19: inout tri_state)

end EP3lO;

library EP3lOL-IB,SHU;
use EP3lOLIB.EP3lQpack. all,SHU.EPROM_PACK. all;
architecture STRUCTURAL of EP310 is

component MACROCELL
generic(macro.P.array: 2-array-type(l to 9));
port(a

tri~..vector(1 to 18);
or-out,en: out bit);

end component,

component P-~term
generic(P: P_string);
port(x: in tri_vector(l to 18); p-.out: out bit);

end component;

component 10_control
generic(I0: Io_string);
port(clk or-in preset,clear

bit;
io...pin

tri-state;
output,feedback: out tri_state);

end component;

signal macro-in : tri..vector(l to 18);
signal oeloc,orloc: bit._vector(l to 8);
signal local,output,feedback:tri..ector(1 to 8);
signal clear,preset: bit;

constant BIT _MAP: EP310_TYPE :=REA]LJEDEC(JEDEC);

--configuration specifications.
for all: MACROCELL use entity EP3lOLIB. MACROCELL(behavioral);
for all:P-term use entity EP3lOLIB.P-.term(behavioral);
for all: 10_CONTROL use entity EP3lOLIB. IO..CONTROL(behavioral.l);

begin
macrojin(l)<= pin-1 after tin;
macro..Jn(2)<= pinjl after tin;
macrojin(3)<= pin..2 after tin;
macro in(4)<= feedback(1);
macrojin(5)<= pin_3 after tin;
macrojin(6)<= feedback(2);
macro.Jn(7)<= pin..4 after tin;
macro..in(8)<= feedback(3);
macrojin(9)<= pin..3 after tin;
macro-in(10)<= feedback(4);
macro..in(l1)<= pin..6 after tin;
macro.in(12)<= feedback(S);
macro..in(13)<= pin-7 after tin;
macro-in(14)<= feedback(6);
macro..in(15)<= pin_8 after tin;
macro-in(16)<= feedback(7);
macro..in(17)<= pin_) after tin;
macro-in(18)<= feedback(8);

-generate eight macrocells.
M: for i in 1 to 8 generate
macro: MACROCELL generic map(BITMAP. P.array(1+9*(i-1) to 9*ji))

port map(macrojin,orloc(i) ,oeloc(i));
end generate;

-- produce D..register preset input.
P: P-term generic map(BIT_MAP. P.array(73))

port map(macro..in,preset);

- - produce D...register reset input.
R: P-term generic map(BITMAP. P.array(74))

port map(macrojin,clear);

-- generate eight 10_control element.
CON: for i in 1 to 8 generate

CONTROL: 10_control generic map(BILMAP.IO array(i))
port map(tr-to-bit(pin...'delayed(tics+tin)),

orloc(i) ,preset,clear, local(i) ,output(i),
feedback(i));

79

end generate;

local(l)<= output(l) after tio+tin when aeloc(l)='l' else
pin..19 after tia+tin;

local(2)<= output(2) after tio+tin when oeloc(2)=&l' else
pin..18 after tia+tin;

lacal(3)<= output(3) after tio+tin when oeloc(3)=&1' else
pin..17 after tio+tin;

local(4)<= output(4) after tio+tin when oeloc(4)='l' else
pin_16 after tia+tin;

local(5)<= output(S) after tio+tin when oelac(5)='l' else
pinl15 after tia+tin;

local(6)<= output(6) after tio+tin when oeloc(6)='l' else
pin_14 after tia+tin;

local(7)<= output(7) after tia4-tin when oeloc(7)=&l' else
pin..13 after tia+tin;

local(8)<= output(8) after tio+tin when oeloc(8)-'l' else
pin-12 after tia+tin;

pin_19<=,output(l) after tad when oelac(l)=&l' else
'U' after tod when oeloc(l)=&O' else
'U';

pin_18<= output(2) after tad when oeloc(2)-'l' else
'U' after tad when oeloc(2)='O' else
'u';

pin_17<= output(3) after tad when oeloc(3)='l' else
'U' after tad when oeloc(3)='O' else
'U';

pin_16<= autput(4) after tad when aelac(4)='l' else
'U' after tad when aelac(4)-'O' else
'U'.

pin-l5<=,output(S) after tad when oeloc(5)='l' else
'U' after tad when aelac(5)='O' else
'u'.

pin_14<=,autput(6) after tad when aelac(4)='l' else
'U' after tad when aelac(6)-'J' else
tut.

pin_13<= autput(7) after tad when aelac(7)=&1' else
'I'I after tad when aelac(7)=&O' else
tut;

pin_ 12<= autput(8) after tad when aeloc(8)=&l' else
ILI after tad when aeloc(8)='O' else

80

'U';

end STRUCTURAL;

library EP3lOLIB,SHU;
use EP3lOLIB. EP31Q..pack. all,SHU. EPROMPACK. all;
entity MACROCELL is

generic (macro P-array: P...array...type(l to 9));
port(a

tri_vector(1 to 18); or out, en: out bit);
end MACROCELL;

library EP3lOLIB,SHU;
use EP3lOLIB. EP31Q..pack. all,S{U. EPROM_-PACK. all;
architecture behavioral of MACROCELL is

component P term
generic(P: P_string);
port(x

tri_vector(l to 18); p_out:out bit);
end component;
signal loc: bit-vector(l to 8);
signal en_loc: bit;
for all. P-term use entity EP31OLIB.p..term(behavioral);

begin
- - generate 8 P -terms.

P: for i in 1 to 8 generate
element: P~term generic map(macroP.array(i))

port map(a,loc(i));
end generate;

OE: P-term generic map(macro-P_array(9))
port maV(a,enjloc);

or-out<= 'l when loc(1)='l' or loc(2)=&l' or loc(3)='l' or
loc(4)=&l' or loc(5)=&1' or loc(6)=&l' or
loc(7)=&1' or loc(8)=&l' else

' 0'1;
en<= en_ - c after tzx;

end behavioral;

library EP3lOLIB,SHU;
use EP3lOLIB.EP3lQ..pack.all,SH T .EPRONPACK. all;
entity io..control is

generic(10: I0_string:="O000000");
port(clk,or..in,preset ,clear

bit:='';io..pin: in tri -state:=&U';
output,feedback: out tri..state);

end io-control;

library EP3lOLIB ,SHU;
use EP31OLIB. EP3lQ..pack. all,SHU. EPROM4-PACK. all;
architecture BEHAVIORAL_1 of io-control is

component D-register
generic(10: 10_string:="0000000");
port(d,ck,preset,clear: in bit:=&0';q: inout bit);

end component;

81

signal Q~loc:BIT:='O',
for all: c-register use entity EP3lOLIB. d.register(behavioral.2);

begin
Dl:D-register generic map(IO)

port map (or...in,clk,preset,clear,Qjoc);

process(io...pin,orjin,Q..loc)
begin

-OUTPUT SELECT.
if IQ(l)='O' then
output<= bit-to-tri(not orin);

elsif IO(2)='O' then
out.put<= bit Tto tri(or~in)

elsif IO(3) IQT then
output<= bit-to-tri(not Q~loc);

elsif IO(4)='O' then
output<= bit-to-tri(c-loc)

else
output<= 'U';

end if;

-FEEDBACK SELECT.
if 10(5)='O' then

feedback<=bit-to tri(or in) after tfd;
elsif IO(6)-'O' then

feedback<=bit-to-tri(Q.loc) after tfd;
elsif IO(7)='O' then

feedback<=io-pin;
else

feedback<= 'U';
end if;
end process

end BEIAVIORALl1;

library EP3lOLIB,SHU;
use EP3lOLIB.EP3lOPACK. all,SHU. EPROM_PACK. all;
er'.ty D..register is

generic(IO: 10_-string:="1111111");
port(d,ck,preset ,clear

bit: =V; q: out bit);
end D-register;

library EP3lOLIB ,SHU;
use EP3lOLIB.EP3lO_-PACK. all,SHU. EPROM_PACK. all;
architecture BEHAVIORAL_2 of D-regist'.r is
begin
EDGETRIGGERED-D:
block ((ck= 1' and not ck'stable) or ciear=11')

signal s: bit;
begin

-- check setup time of D...register.
assert ck'stable or (ck='O') or d'stable(tsu) or (clear='l') or

(IO(3)='l' and IO(4)='l' and 10(6)='1')
-- not(not ck' stable and (ck='l') and not d'stable(tsu)
-- and (clear='O')) and (IO(3)='O' or IO(4)='O' or IO(6)='O')

report "Setup Time Failure."
severity FAILURE;

-- check hold time of d...register.
assert ck'delayed(th)'stable or (ck'delayed(th)=&O') or

d'stable(th) or (clear='l') or
(IO(3)='l' and IO(4)='l' and IO(6)='l')

-- not (not ck'delayed(th)'stable and (ck'delared(th)='O') and
-- not d'stable(th) and (clear=&O') and (IO(3)=&O' or
-- IO(4)='O' or IO(6)=1O'))

report "Hold Time Failure."
severity FAILURE;

-check setu? time of D-.register. (preset)
assert ck stable or (ck='O') or preset'stable(tsu) or (clear='l') or

(IO(3)='l' and IQ(4)=&l' and IQ(6)='l')
-- not(not ck'stable and (ck= 1') and not ?reset'stable(tsu)
-- and (clear=&O') and (IO(3)='O' or IO(4)= 0' or IO(6)='0'))

report "Setup Time Failure."
severity FAILURE;

-check hold time of c-register. (preset)
assert ck'delayed(th)'stable or (ck'delayed(th)=&Q') or

preset'stable(th) or (clear='l') or
(IO(3)='l' and IQ(4)='l' and 10(6)='l')

-- not (not ck'delayed(th)'stable and (ck'delayed(th)=&0') and
-- not preset'stable(th) and (clear-'O') and (IO(3)='O' or
-- IO(4)=&0' or IO(6)='O'))

report "Hold Time Failure."
severity FAILURE;

-check minimum pulse width of d...register.
assert ck'stable or (ck='l') or ck'delayed'stable(tch) or (IO(3)='l'

and IO(4)='l' and IO(6)='l')
-- not (not ck'stable and ck='l' and ck'delayed'stable(tch) and
-- (IO(3)=&O' or IO(4)=&O' or IO(6)=?O'))

report "Minimum Pulse Width Failure."
severity FAILURE;

s<= guarded '1' when (preset' 1' and clear='0') else
d when (clear='O' and preset=&0' and ck='l' and not ck'stable)
else
'0' after tclr when clear='l' else
s;

q<= s;
end block EDGE_TRIGGEREDD;

end BEHAVIORAL_2;

library EP3lOLIB ,SHU;
use EP3lOLIB. EF3lQ.pack. all,SHU. EPROML.PACK. all;
entity P~term is

generic(P: P..string);
port(x: in tri_vector(l to 18); pout: out bit);

end P_term;

83

library EP31OLIB,SHU;
use EP31OLIB. EP310_pack. all,SHU. EPROMPACK. all;
architecture behavioral of Pterm is
begin

process(x)
variable c:BIT;

begin
c:=checkPterm(P,x);
p_out<= c after tlad;

end process;
end behavioral;

C. VHDL MODEL FOR EP1800.

library SHU;
use STD. TEXTIO. all,SHU. EPROM_PACK. all;
package EPl800..pack is

subtype IQ..string is string(l to 5);
- - 10_string 1 to 7 are switches inside the io architecture;

type 10_array..type is array(NATURAL range<>) of I0...string;

subtype Pstring is string(1 to 88);
type P-array..type is array(NATURAL range <>) of P...string;
subtype input-line is tri_vector(l to 44);

type EP1800_TYPE is record
P...array: P-array..type(l to 480);
I0...array: 10_array-type(l to 48);

end record;

-all the time constants are for eplBOO-2;

constant tin:TIME:=10 ns;
constant tio:TIME:=15 ns;-- tio(here):= tin(table)+tio(table);
constant tlad:TIME:=40 ns;
constant tlade:TIME:=35 ns;
constant tod:TIME:=15 ns;
constant tzx:TIME:=15 ns;
constant txz: TIME: =15 ns;
constant tsu:TIME:=12 ns;
constant th:TIME:=30 ns;
constant tch: TIME: =24 ns;
constant tic:TIME:=40 ns;
constant tice: TIME: =35 ns;
constant tics: TIME: =4 ns;
constant tfd: TIME: =10 ns;
constant tclr:TIME:=40 ns;
constant tclre:TIME:= 35 ns;

-here we demonstrate overload function. (which with same function name
-but differt input type).

function REVERSE(A
P-array..type(l to 120)) return p...array...type;

function REVERSE(A
I0.array-type) return 10..array..type;

function FIND(A
10_string; position: in natural)

return character;
function READJEDEC(F name

string) return EPl800_TYPE;

end EPl800..YACK;

package body EP1800-PACK is

function REVERSE(A

85

P_arraytype(1 to 120)) return P arraytype is
variable revarray: p.array_type(l to 120);

begin
for i in 1 to 12 loop

revarray(121-10*(i) to 120-10*(i-i))
:=A(l+10*(i-1) to 10*(i));

end loop;
return revarray;

end reverse;

function REVERSE(A
IOarraytype) return 10_arraytype is

variable rev array: IO-array-type(l to A'length);
variable c: positive:=l;

begin
for i in A'reverse_range loop

rev-array(c):= A(i);
c: = c+1;

end loop;
return revarray;

end reverse;

function FIND(A
IOstring; position: in natural)

return character is
begin

return A(position);
end FIND;

function READJEDEC(F_name
string) return EP1800_TYPE is

file F: text is in Fname;
variable temp: line;
variable temp-char: character;
variable IOtemp: string(l to 42500);
variable EP1800_MAP: EPI800_TYPE;
variable flag: boolean :=true;
variable GOOD,Ljflag: boolean: =false;
variable j,k:integer:=l;

begin
-- cut out the unwanted portion.

while flag loop
readline(F,temp);
read(temp, tempchar);
if(temp-char= *') then

L-flag: =true;
end if;
if(temp-char='L' and L flag) then

flag: =false;
end if;
assert not endfile(F)

report "The input file is not correct";
end loop;

-- extract the bit map information.
while not endfile(F) loop

readline(F,temp);

86

j: =temp. al1l' length;
10_temp(k to k+j-l):=temp.all;
k:= k+j;

end loop;
for i in EPl800_MAP.p-array range loop

EP18OQ..MAP. p..array(i): 10...temp(1+88*(i-1) to 1*88);
end loop;
for i in EPl800_MAP. lo-array'range loop

EPl800_MAP. IOarray(i): =I0..temp(42241+5*(i-l) to 42240+ 1*5);
end loop;
return EPl800_MAP;

end READ_JEDEC;
end EPl800..pack; ________

....... .. ;......~......

library EPl800LIB, SHU;
use EPl800LIB.EPl800_PACK. all, SHU.EPROM..PACK. all;
entity EP1800 is

generic (JEDEC : in string);
port (pin...14,pinlS5,pin_16,pin_17,

pin..19 ,pin..20,pin..21,pin..22,
pin..48 ,pin..49 ,pin_.50 ,pin..51,
pin..53,pin..54,pin..55 ,pin..56

tri-state:='U';
pin..2,pin..3,pin_.4,pin-.5 ,pin..6,pin-7,
pin.8 ,pin.9 ,pin -10O,pin..ll ,pin..12 ,pin...13,
pin..23,pin..24,pin-.25,pin..26,pin..27 ,pin..28,
pin..29,pin...30,pin_.31,pin...32,pin...33,pin_34,
pin.36,pin..37,pin.38,pi...39 ,pin..40,pin..41,
pin-42,pin43,pin44,pin 45,pin.46,pin_47,
pin-57,pin_58,pin59,pin6,pin.61,pin_62,
pin-63,pin64,pin.65,pin_66,pin.67,pin_68
:inout tri-state:='U');

end EPl800;

library EPl800LIB, SHU;
use EP1800LIB. EP18OQ..pack. all, SHU. EPROMPACK. all;
architecture STRUCTURAL of EP1800 is

component QUADRANT
generic(Q.P.array: P..array...type(l to 120);

Q_.IQ..array: 10_-array~type(l to 12));
port(global.bus: in tri..vector(13 to 44);

quad-clk: in bit;

io_8: inout tri-state;
quad: out tri-vector(l to 4));

end component;

signal global-bus: tri-vector(13 to 44)
="UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU";

signal quad..A,quad_.B,quad-C,quad.D: tri_vector(l to 4);
constant BITMAP: EPl800_TYPE:= READJEDEC(JEDEC);

-configuation specification.

87

for all: QUADRANT use entity EPl800LIB.QUADRANT(STRUCTURAL);
begin

-Due to the proprietary reason, the global bus assignment statements
-- were removed.

pin...0<= quad..A(l) after tod;-- (pin...l);
pin..ll<= quad-A(2) after tod;-- (pin..ll);
pin..12<= quacLA(3) after tod;-- (pin..12);
pin..13<= quad-A(4) after tod; -- (pin..13);
pin..26<= quad..B(l) after tod;-- (pin..26);
pin..25<= quad..B(2) after tod;-- (pin..25);
pin..24<= quad-B(3) after tad;-- (pin_.24);
pin..23<= quad..B(4) after tod; -- (pin..23);
pin..44<= quad..C(l) after tod;-- (pin..44);
pin_45<= quad..C(2) after tod; -- (pin..45);
pin..46<= quad..C(3) after tad;-- (pin..46);
pin..47<= qua&..C(4) after tad;-- (pin..47);
pin..60<= quacLD(l) after tad;-- (pin..60);
pin..59<= quad..D(2) after tad; -- (pin..59);
pin..58<= qua...D(3) after tad;-- (pin..58);
pin_.57<= qua...D(4) after tad;-- (pin..57);

QA: QUADRANT
generic map(BITMAP.P_array(l to 120),

BITMAP. COarray(1 to 12))
part map(global-bus tri_to_bit(pin-17),pin_2,pin_3,

pin.4 ,pin-5,pin.6 ,pin.7 ,pin.8 ,pin_9,
quadA);

QB: QUADRANT
generic map(reverse(BIT_IAP.P_array(121 to 240)),

reverse(BITMAP.IO_array(13 to 24)))
part map(global_bus tri_to_bit(pin19),pin.34,pin.33,

pin..32 ,pin..31 ,pin..30 ,pin.29 ,pin_28 ,pin_27,
quadB);

QC: QUADRANT
generic map(BIT_MAP.P_array(241 to 360),

BITMAP. 10_array(25 to 36))
part map(globalbus,tri to_bit(pin..51),pin...36,pin_37,

quad-C);

QD: QUADRANT
generic map(reverse(BITMAP.P_array(361 to 480)),

reverse(BIT_MAP. IOarray(37 to 48)))
port map(global-bus,tri_to_bit(pin.53),pin.68,pin..67,

pin...66,pin.65,pin_64,pi...63,pin..62,pin_61,
quad-D);

end STRUCTURAL;

library EPl800LIB, SHU;
use EP1800LIB.EPl800_PACK. all, SHU.EPROM_PACK. all;
entity QUADRANT is

generic(Q.P.array: P..array...type(1 to 120);
Q_.IO...array: IO...array...type(1 to 12));

88

port (global-bus: in tri~..vector(l3 to 44);
quadclk: in bit;
iol ,io.2 ,io3, io.4, io.5 , io..6, io7,
io_8:inout tristate;
quad: out tri-vector(l to 4));

end QUADRANT;

library EPl800LIB, SHU;
use EPl800LIB.EPl800-PACK.all, SHU.EPRO_PACK.all;
architecture STRUCTURAL of QUADRANT is

component LOCAL.)IACROCELL
generic(P..array: P.,.array-.type(l to 10); 10: IO...string;

t-lad: TIME:=tlad; t..clr: TIME:=tclr;
t_ic:TIME:=tic);

port(inputs
input...line; quad_cik: in bit;

oe,output: out bit);
end component;

component GLOBAL _MACROCELL
generic(P..array: P-array-type(l to 10); 10: IO~string;

t-lad:time:=tlade; t_clr:time:=tclr;
t_ic:time:=tic);

port(inputs
inputjline; quad-cik: in bit;

oe,output: out bit);
end component;

signal oe,Moutput: bit..vector(l LO 12);
signal local -bus: tri_vector(1 to 12);
signal local: tri-vector(1 to 8);
signal inputs: inputjline;
for all: LOCALMACROCELL

use entity EPlBOOLIB. LOCAL _MACROCELL(structural);

for all: GLOBAL MACROCELL
use entity EPl800LIB. GLOBAL _MACROCELL(structural',

begin

inputs<= local-bus & globalbus;

MlE: LOCAL_.MACROCELL generic map(Q.Y array(I to lO),Q..10.array(l),
tlade,tcj rc,tice)

port map (inputs,quadclk,
oe(1) ,M-output(1));

M2_E: LOCAL..MACROCELL generic map(Q2K..array(ll to 20),cIO-array(2),
tiade ,tclre .tice)

port map (inputs,quad.clk,
oe(2) ,M..output(2));

M3-E: LOCAL_~MACROCELL generic map(QY..array(21 to 30),Q..IQ.array(3),

tlade,tclre,tice)
port map (inputs,quad..clk,

oe(3) ,M..output(3));

M4E:LOCALMACROCELL generic map((LP..array(31 to 40) ,(_L.array(4),
tlade,tclre,tice)

port map (inputs,quad.clk,
oe(4) ,M..output(4));

M15.GE: LOCAL _MACROCELL generic map(cLP..array(41 to 50),QIO..array(5))
port map (inputs,quad_cik,

oe(5) ,Moutput(5));

M6-GE: LOCALMACROCELL generic map((LP..array(51 to 60),QO...array(6))
port map (inputs,quad-eik,

oe(6) ,M..output(6));

M7-GE: LOCALMACROCELL generic map(cLP..array(61 to 70),QO.array(7))
port map (inputs,quad..clk,
oe(7) ,Moutput(7));

M8_GE: LOCALMACROCELL generic map(QP..array(71 to 80) ,QIO...array(8))
port map (inputs,quac~clk,

oe(8) ,M..output(8));

M9-GL: GLOBAL _MACROCELL generic map(QLP..array(81 to 90),QIQ..array(9))
port map (inputs,quadclk,

oe(9) ,M...output(9));

"&!1O GL: GLOBALI -ACROCELL
generic map(QP..array(91 to 1QO),QIO..array(1O))
port map (inputs,qua&..clk,

oe(10) ,M...output(10));

M11-GL: GLOBALMACROCELL
generic map(Q_.P..array(101 to 110) ,cLIO~array(11))
port map (inputs,quad.clk,

oe(11) ,Moutput(11));

M12_GL: GLOBALMACROCELL
generic map(fP..array(111 to 120) ,Q..IQ.array(12))
port map (itnputs,quad.clk,

oe(12) ,N..output(12));

io_1<= bit-to..tri(Moutput(1)) after tod when oe(1)='1' else
VU after tod when oe(1)='0' else
vu'.

io_2<= bit-to..tri(M.output(2)) after tod when oe(2)='1' else
VU after tod when oe(2)='0' else
out;

io_3<= bit-to-tri(Moutput(3)) after tod when oe(3)='1' else
VU after tod when oe(3)='0' else
tut;

90

io..4<= bit to..tri(M...output(4)) after tod when oe(4)='l' else
I'UI after tod when oe(4)='O' else

io-.5<= bit to..tri(M...output(5)) after tod when oe(5)='l' elseI'UI after tod when oe(5)=&O' else
'ut ;

1o_6<= bit totri(Moutput(6)) after tod when oe(6)=&l' else
IU'I after tod when oe(6)='O' else
l';

io_7<= bit to..tri(M...output(7)) after tod when oe(7)='l' else
, u after tod when oe(7)='O' else
'U';

io_8<= bit-to...tri(M..output(8)) after tod when oe(8)=&l' else
VU after tod when oe(8)='O' else
'Ul;

local(l)<= bit_to-tri(M..output(l)) after tio when oe(l)=&l' else
io_1 after tio;

local(2)<= bit_to -tri(M-.output(2)) after tio when oe(2)='l' else
io_2 after tio;

local(3)<= bit_to -tri(M..output(3)) after tio when oe(3)='l' else
io_3 after tio;

local(4)<= bit-to-tri(X..output(4)) after tio when oe(4)=&l' else
io_4 after tio;

local(5)<= bit-to Ttri(M..output(5)) after tio when oe(5)='l' else
io_5 after tio;

local(6)<= bit-to-tri(Moutput(6)) after tio when oe(6)='l' else
io_6 after tio;

local(7)<= bit to tri(M..output(7)) after tio when oe(7)=&l' else
io_7 after tio;

local(8)cz= bit-to-tri(M..output(8)) after tio when oe(8)='l' else
io_8 after tio;

local-bus(l)<= local(1) when find(cLIO..array(l),4)='o' else
bit.to..tri(M...output(1)) after tfd;

local-..bus(2)<= local(2) when find(cLIO..array(2),4)='o' else
bit-tq..tri(M-output(2)) after tfd;

local-jbus(3)<= local(3) when find(tLIO..array(3),4)='O' else
bit-.to-.tri(M...output(3)) after tfd;

local..bus(4)<= local(4) when find(cLIO~array(4),4)='O' else
bit-to..tri(M...output(4)) after tfd;

91

localbus(5)<= local(5) when find(cLIO_azray(5),4)=&O' else
bitto..tri(K__output(5)) after tfd;

localbus(6)<= local(6) when find(QCL.array(6),4)='0' else
bit.to...tri(M...output(6)) after tfd;

local..bus(7)<= local(7) when find(1L1Q..array(7),4)='O' else
bit..to..tri(1toutput(7)) after tfd;

local bus(8)<= local(8) when find(Q.jO.array(8) ,4)='0' else
bitto..tri(MLoutput(8)) after tfd;

local...bus(9)<= bit...totri(M.output(9)) after tfd;
local-bus(lO)<= bit-to-tri(M..output(l0)) after tfd;
local -bus(ll)<= bit_to_tri(M..output(ll)) after tfd;
local...bus(l2)<= bit-to-tri(ltoutput(12)) after tfd;

quad(l)<= bit_to -tri(M...out?ut(9)) when oe(9)='l' else
VU when oe(9)='O else
'U'.;

quad(2)<= bit_to-tri(Mtoutput(lO)) when oe(1O)='l' else
VU when oe(lO)-'O' else
tu' ;

quad(3)<= bit-to-tri(M..output(ll)) when oe(ll)='l' else
VU when oe(ll)='O' else
fUl .

quad(4)<= bit-to-tri(M -output(12)) when oe(12)='l' else
'U' when oe(12)-'0' else
'U'.

end STRUCTURAL;

library EPl800LIB, SHU;
use EP1800LIB.EP18Q..pack. all, SHU.EPROMPACK. all;
entity LOCAL_-MACROCELL is

generic(P..array: P-.array...type(l to 10); 10: 10_string;
t -lad:time:=tlad; tclr:time:=tclr;
t 7ic:time:=tic);

port(inputs
input..line; quad_clk
bit;

oe,output: out bit);
end LOCAL..MACROCELL;

library EPlBOOLIB, SITU;
use EP1800LIB. EPl8OQ..pack. all, SITU. EPROMPACK. all;
architecture STRUCTURAL of LOCALMACROCELL is

component P-term
generic(P: Pstring; t-lad: time:=tlad);
port(x

input-line; p-out: out bit);
end component;

92

component 10_CONTROL
generic(IO: IO-string; t-clr time: =tclr);

port(orin, cik, clear
bit;

output: out bit);
end component;

signal local: bit-vector(l to 10);
signal or_out,clk: bit;

for all: P term use entity EPl800LIB.P-term(behavioral);
for all: 10_-CONTROL use entity EP1800LIB. 10_CONTROL(behavioral);

begin
P1: P..term generic map(P...array(l),tjlad)

port map(inputs, local(1));
P2: P-term generic map(P..array(2),t..lad)

port map(inputs, local(2));
P3: P-term generic map(P..array(3),t..lad)

port map(inputs, local(3));
P4: P-term generic map(Parray(4),tjlad)

port map(inputs, local(4));
P5: P-term generic map(P..array(5),tjlad)

port map(inputs, local(5));
P6: P-term generic map(P..array(6),t..lad)

port map(inputs, local(6));
P7: Pterm generic map(Parray(7),t-lad)

port map(inputs, local(7));
P8: P-term generic map(Parray(8),t-lad)

port map(inputs~local(8));
CLRP: P-term generic map(P...array(9),tjlad)

port map(inputs, local(9));
OECKP:P..term generic map(Parray(O),t.ic)

port map(inputs, local(10));

or-out<=&1' when (local(l) or local(2) or local(3)
or local(4) or local(5) or local(6)
or local(7) or local(8))='l' else
of.*

OECKS: process(quad..clk,local(lO))
begin

if I0(2)=&0' then
clk<= quad..clk after tics;
oe<= local(l0) after tzx;

else
clk<= local(10);
oe<= l after tzx;

end if;
end process QECKS;

101: IO...CONTROL generic map(I0,tclr)
port map(or..out,clk,local(9),output);

end STRUCTURAL;

93

library EPiBOOLIB, SHU;
use EPl800LIB.EP800..pack. all, SHU.EPRMPACK. all;
entity GLOBAL_-MACROCELL is

generic(P...array: P..array...type(1 to 10); 10: IO..string;
t -lad: time:=tlad; t..clr: time:=tclr;-
t-ic:time:=tic);

port(inputs
input~line; quad_clk
bit;

oe,output: out bit);
end GLOBAL_MACROCELL;

library EP1800LIB, SHU;
use EP1800LIB.EP18Q..pack. all, SHI.EPROMPACK. all;
architecture STRUCTURAL of GLOBALMACROCELL is

component Pterm
generic(P: P.striiig; tjlad: time:=tlad);
port(x: in input-line; p-..out: out bit);

end component;

component 10_CONTROL
generic(TO: 10_string; t-clr: time:=tclr);

port(orjin,clk,clear: in bit;
output: out bit);

end component;

signal local: bit-vector(l to 10);
signal or_out,clk,oeck: bit;

for all: P-term use entity EPl800LIB.Pterm(behavioral);
for all: 10_CONTROL use entity EPl800LIB.IO_CONTROL(behavioral);

begin
P1: P..term generic map(Parray(l))

port map(inputs,local(l));
P2: P-term generic map(P-array(2))

port map(inputs,local(2));
P3: P-.term generic map(Parray(3))

port map(inputs, local(3));
P4: P..term generic map(P-array(4))

port map(inputs, local(4));
P5: P-.term generic map(P..array(5))

port map(inputs,local(5));
P6: P...term generic map(P-array(6))

port map(inputs, local(6));
P7: P..term generic map(P-array(7))

port map(inputs,local(7));
P8: P-term generic map(P..array(8))

port map(inputs, local(8));
CLRP: P-term generic map(P..array(9))

port map(inputs ,local(9));
OECKP: Pterm generic map(P..array(10) ,tic)

port map(inputs,local(!0));

or-out<='l' when (local(1) or local(2) or local(3)
or local(4) or local(5) or local(6)

94

or local(7) or local(8)) ='l' else
lot

QECK_S: process(quac-clk,local(lO))
begin

if IO(2)=&0' then
clk<= quad..clk after tics;
oeck<= local(l0);

else
clk<= local(10);
oeck<= '*

end if;
end process OECKS;

OES: process(oeck)
begin

if IO(4)='0' then
oe<= oeck;

else
oe< '0o;

end if;
end process 0ES;

10_1: TOCONTROL generic map(IO)
port mapi'or out,clk,local(9),output);

end STRUCTURAL;

library EPl800LIB, SHU;
use EPiSOOLIB. EPl800..pack. all, Sift. EPRONPACK. all;
entity 10_CONTROL is

generic(10: IO..string; t_clr time:=tclr);
port(orjin, clk,clear

bit; output:out bit);
end 10_CONTROL;

-For architecture body source code please contect Prof. CHIN-IIWA LEE,
-Naval Postgraduate School, Monterey, CA, 93943.

library EPl800LIB, SHU;
use EP1800LIB.EP8Q..pack. all, SHU.EPROM_PACK. all;
entity D~register is

generic(10: character: =' 0'; t_clr:time:=tclr);
port(d,clk,clear

bit: =0'; q: out bit);
end D_register;

library EPl800LIB, SHU;
use EP1800LIB. EPl800..pack. all, SHU. EPROMPACK. all;
architecture BEHAVIORAL of D-register is
begin
EDGETRIGGEREDD:
block ((clk='l' and not clk'stable) or clear='l')

signal s: bit;
begin

95

-check next setup time of D-refister.
assert clk'stable or (clk='O) or d'stable(tsu) or
* (clear='l') or 10='l'

-- not(not clk'stable and (clk= 1') and not d'stable(tsu)
-- and (clear='0')) and IO&')

report "Seu Time Fialure."
severity FAILURE;

-check hold time of d-refister.
assert clk'delayed(th) stable or (clk'delayed(th)='O') or

d'stable(th) or
(clear='l') or I=1

-- not (n-c clk'delayed(th)'stable and (clk'delared(th)='0') and
-- not d'stable(th) and (clear=&0') and I0=-'O')

report "Hold Time Failure."
severity FAILURE;

-check minimum pulse-width of dregister.
assert clk'stable or (clk='l') or clk'delayed'stable(tc 'h) or 10=' 1''

-- not (clk'stable and (clk-'l' and clk'delayed'stable(tch) and
-- 1'0')

report "Minium pulse width failure"
severity FAILURE;

s<= guarded '0 after t-cdr when clear='l' else
d when (clear-'O' and clk-'l' and not clk'stable) else

q<= s;

end block EDGETRIGGERED_D;
end BEHAVIORAL;

library EPl800LIB, SHU;
use EPl800LIB. EPl800_pack. all, SHU. EPRON_PACK. all;
entity P-term is

generic(P: Pstring; tjlad: time:=tlad);
port(x

input-line; p-out: out bit);
end P_term;

library EPl800LIB, SHU;
use EPl800LIB.EPl8CO~pack. all, SHU.EPROMPACK. all;
architecture behavioral of P-term is
begin

process(x)
variable c: BIT;

begin
c:=check_Pterm(P,x);
p...out<= c after t_lad;

end process;
end behavioral;

96

APPENDIX B. VHDL CODE FOR TEST-BENCH

A. VHDL SOURCE CODE FOR TOP ENTITY DECLARATION.

-- NOTE: In the top-level design unit there can not have TIME generic
-- parameter, other wise there will have a error message in model
-- generate(MG) state and the MG process will stop without creating any
-- object file.

entity TESTBENCH is
generic (ck rate: integer:= 20000000;

termsim: integer:= 10;
delay: integer:=1000); -- delay unit ns.

end TESTBENCH;

97

B. TEST-BENCH ARCHITECTURE BODY FOR EP310

library EP3lOLIB,SHU;
use EP31OLIB. ep3lO..pack. all,S{U. EPROM..PACK. all;
architecture ep3lO of test-.bench is

component ep3lO generic(JEDEC: in string);
port(pinl,pin_2,pin-3,pin4,pin5,pin_6,pin_7,

pin8,pin.9,pin..ll: in tri_state;
pin...12,pin...13,pin..14i,pin..pin6,pin17,
pin..18,pin-.19: inout tri_state)

end component;

signal pinl,pin_2,pin3,pin4,pin.5,pin-6,
pin..7,pin.,8,pin..9,pin..ll: tristate:= 'U;

signal pin..12,pin13,pin4,pin_1S,pin 16,
pin..17,pin_18,pin-19: resolver tri-state:= 'U;

signal input: tri_vector(1 to 10);
signal io: tri-vector(1 to 8);
signal count: integer :=0;
signal clock: bit:=VO;

for all : ep3lO use entity EP3lOLIB.ep3lO(structural);
begin

EPl:EP3lO generic map("cntr7. jed")
port map(pin-l,pin.2,pin..3,pin.4,pin5,pin_6,pin_7,

pin.8 ,pin.9 ,pin...i,
pin...12,pin13,pin_14,pin.15 ,pin_16,pinl17,
pin..18,pin..19);

CLOCKGENERATOR: process(clock)
begin

clock<= not clock after 1 sec / ck...rate;
pin..l<= bit-to..tri(clock);

end process CLOCK_GENERATOR;

pin_3<='l'; --after 2 sec /ck rate; ENABLE.
pin_2<-'0'; --after 1 sec/ck..rate; RESET.

TERMINATE: process(count)
begin

assert (count /= term sim)
report "simulation is done. ";

end process TERMINATE;

IO..JNPUT:block(clock = '1')
begin

pin-19<= guarded '1';
end block IO-INPUT;

count<= count+l after delay*ns;

input<= pin..1 & pin..2 & pin..3 & pin..3 & pin_.5 & pin-6 & pin_7

98

& pin_8 & pin-9 & pir-il;
io <= pin -7 2 & pin..13 & pin..14 & pin_.15 & pin_16 & pin..17 & pin_18

& pin_1-19;
end ep3lO;

99

DEC-05-1988 17: 18:20 VHDL Report Generator PAGE 1

Vhdl Simulation Report

Kernel Library Name: <<SHU>>TESTEP3
Kernel Creation Date: DEC-05-1988

Kernel Creation Time: 17:11: 16
Run Identifer: 1

Run Date: DEC-05-1988
Run Time: 17: 11: 16

Report Control Language File: TESTEP310.RCL
Report Output File : TEST_EP3.RPT

Max Time: 9223372036854775807

Max Delta: 2147483646

Report Control Language

simulationreport s is
begin

page-width is 721
select-signal : 'c"=>pin-19;
select-signal : "clk"=>pinl;
select-signal pin_- 2,pin_- 3;
select-signal I pinl12 - pin_18"=> io(l to 7);
sample-signals by-event in ns;

end;

Report Format Information

Time is in NS relative to the start of simulation
Time period for report is from 0 NS to End of Simulation
Signal values are reported by event (' ' indicates no event)

100

DEC-05-1988 17:18:20 VHDL Report Generator PAGE 2

TIME -------------------- SIGNAL NAMES-------------------------

(NS) c clk PIN_2 PIN_3 pin_12 - pin-l8(l TO 7)

0 'U' 'U' 'U' 'U' "UUUUUUU"+11 '0 '0' ''
+1 1

39
+1 I "0000000"
50
+1I 'i' '1'
76
+1 i "0000001"

100
+1i '0'

150 l
+1 i1

176
+1 i "0000010"

200
+1I '0'

250
+11 1

276
+1 I "0000011"

300
+1 '0'

350 l
+11
376

+1 i "0000100"
400

+1 '0'
450
+1I ''
476

+1 i "0000101"
500
550

+11 li
576

+1 I "0000110"
600
+11 0650

+1 lit1
676
+1 i "0000111"
700
+1 '0

750
+1I ' '

776

101

+1 I"000100011
800 lo+1 '0

102

C. TEST-BENCH ARCHITECTURE BODY FOR EPI800

library EPiBOOLIB, SHU;
use EPl800LIB.EPl800_PACK. all, SHU.EPROM_PACK. all;
architecture epl800 of test-bench is

component EP1800
generic (JEDEC :in string);
port (pin..4 ,pin...5 ,pin..6 ,pin.17,

pin_.19 ,pin_2O,pin..21 ,pin..22,
pin..48,pin..49 ,pin..50,pin..51,
in..53,pin..54,pin..55 ,pin_.56

tri-state:= 0;
pin..2,pin.3 ,pin_4,pin- ,pin...6,pin_7,
pin_8,pin 9,pinl,pinll,pin...2,pin.33,
pin..23 ,pin...24 ,pin..25 ,pin..26 ,pin..27 ,pin_.28,
pin..29 ,pin...30 ,pin..31,pin_.32 ,pin_33 ,pin_34,
pin_36,pin 37,pin38,pin39,pin.40,pin_4l,
pin-42,pin 43,pin44,p.45,pin.46,pin.47,
pin..57 ,pin -58 ,pin..59 ,pin..60 ,pink6l ,pin_.62,
pin..63,pin_.64)p in.65 ,pin...66,pin...67,pin_68
:inout tri-state:=10');

end component;

signal DNTJP,CLOCK)LOAD,RESET
:tri -state:='O';

signal Q: tri -vector(l to 16):="0000000000000000";
signal D: tri_vector(1 to 16):="0000000000000000";
signal ck: bit :='O';
signal c: positive-1;

-configuration specification
for all : epl800 use entity EPl800LIB.epl800(structural);

begin

-use named association interface list, associated lists are according to
-chip map from ALTERA Design Processor Utilization Report.

EPl: EPl800 generic map("count. jed")
port map(pin_2>Q(9) ,pin_3=>Q(10) ,pin_.4>Q(ll),

pin-.5=>Q(12) ,pin..6>Q(13) ,pin..7>Q(14),
pin..8>Q(15) ,pin..9>Q(16) ,pin...10>Q(1),
pin....1>Q(2) ,pin_12=>Q(3) ,pin_.13=>Q(7),
pin-16>DNUP,pin-17=>CLOCK,pin_19=>D(8),
pin...20>D(9) ,pin...21>D(10) ,pin...22>D(11),
pin...23>D(1) ,pin..24>D(2) ,pin...25=>D(3),
pin..26=>D(7) ,pin_..48>D(12) ,pin...49>D(13),
pin_50=>D(14) ,pin..51=>D(15) ,pin...53>CLOCK,
pin.34=>D(16) ,pin-55=>LOAD,pin..56>RESET,

pin...60>Q(8) ,pin...66>D(4) ,pin...67>D(5),
pin_68>D(6));

CLOCKGENERATOR: process(ck)

bgnck<= not ck after delay*ns;

1 03

CLOCK<= bitto-tri(ck);
end process CLOCKGENERATOR;

DNUP <= '1'; -- up counter.
RESET <= '1' when c = 1 elsel0';

LOAD <= '1' when c = 2 else'0';
c< = c+l after delay*ns;

TERMINATE: process(ck)
begin

assert (NOW /= termsim*delay*ns)
report "simulation is done.";

end process TERMINATE;

104

DEC-05-1988 17:19:44 VHDL Report Generator PAGE 1

Vhdl Simulation Report

Kernel Library Name: <<SHU>>TEST_COUNT
Kernel Creation Date: NOV-24-1988

Kernel Creation Time: 14:37:26
Run Identifer: 1

Run Date: NOV-24-1988
Run Time: 14:37:26

Report Control Language File: TEST_EP1800.RCL
Report Output File : TEST_COUNT. RPT

Max Time: 9223372036854775807

Max Delta: 2147483646

Report Control Language :

simulationreport COUNTUP is
begin

page..width is 72i
select_signal : 'RE"=>RESET;
select_signal : "clk"=>CLOCK;
selectsignal : "LO"=>LOAD;
select_signal : "DNUP"=> DNUP;
selectsignal :Q;
samplesignals byevent in ns;

end;

Report Format Information

Time is in NS relative to the start of simulation
Time period for report is from 0 NS to End of Simulation
Signal values are reported by event (' ' indicates no event)

105

DEC-05-1988 17: 19:44 VHDL Report Generator PAGE 2

TIME ------------------- SIGNAL NAMES -------------------------

(NS) RE clk LO DNUP Q(1 TO 16)
00 '0' 0' '0' "LJUUU"UUUU
Of , to, I I

+1I '1' '1'

55 "ooo ooUUXUUUU"7070I "O00000000000UUUU"t

+1 Ioooooouu
75 "0000000000000000"

1000 t
+1I '0' 1I' i

2000 V '0'
+1 0

3000 fi t
+1 '1

3019 "1000000000000000"
4000 '0'

+1I
5000

+1 'i'
5019 0"000000000000000"
6000 l

+1 '0'
7000

7019 "1100000000000000"
8000 V

+1 '0
9000

+1l1
9019 ''0010000000000000"
10000

+I '0'
11000

+1 '1'

11019 '"I010000000000000"
12000

+11 0o
13000 f

+11
13019 '"0110000000000000"
14000

+1 fot+i '0'
15000

+1 lit
15019 "1110000000000000"
16000

+i '0'

17000
+1 ''

7019 0001000000000000
18000

106

+1 lot0
19000 oil

19019 1 II1001000000000000'1

107

APPENDIX C. EXAMPLES OF SIGNAL SELECT FILE AND SIGNAL

MAP FILE

A. SIGNAL SELECT FILE
-- selected trace signals for testepl800 are
RESET;
CLOCK;
LOAD;
DNUP;
: Q;

108

B. SIGNAL MAP OF THE TESTEP3 MODEL
DEC-13-1988 14: 26: 12 VHDL Simulator PAGE 1

SIGNAL NAME MAP
KERNEL = «SHU >TESTEP3

:CLOCK
:COUNT
INPUT(1 TO 10)
10(1 TO 8)
PIN_1
PIN_ 11
PIN_12
PIN_13
PIN_14
PIN_15
PIN_16
PIN_17
PIN_18
PIN_19
PIN_2
PIN_3
PIN_4
PIN_5
PIN_6
PIN_ 7
PIN_8
PIN_9

10_INPUT :GUARD
/EP1 CLEAR;
/EP1 :FEEDBACK(1 TO 8)
/EP1 :LOCAL(1 TO 8);
/EP1 :MACRO_IN(1 TO 18)
/EP1 :OELOG(1 TO 8)
/EP1 :ORLOC(1 TO 8)
/EP1 :OUTPUT(1 TO 8)
/EP1 :PIN_ 1
/EP1 :PIN_11
/EP1 PIN_12
/EP1 :PIN_ 13
/EP1 :PIN_14
/EP1 :PIN_ 15
/EP1 :PINNj6
/EP1 PIN_17
/EP1 PIN_18
/EP1 :PIN_ 19
/EP1 :PIN_2
/EP1 :PIN..3
/EP1 :PIN_4
/EP1 :PINS
/EP1 :PIN..6
/EP1 :PIN_7
/EP1 PIN_8
/EP1 :PIN_9
/EP1 :PRESET
/EP1.CON(1) : CLK'TYPECONV_?9_C

109

/EPl.CQN(l) : PIN_1'DELAYED_79_A
/EP1.CON(1)/CONTROL :CLEAR
/EP1.CON(1)/CONTROL CLK;
/EP1.CON(1)/CONTROL FEEDBACK
/EP1.CON(1)/CONTROL IO10PIN
/EP1.CON(1)/CONTROL ORN
DEC-13-1988 14: 26: 12 VHDL Simulator PAGE 2

SIGNAL NAME MAP
KERNEL = «<SHU >TESTEP3

/EP1.CON(1)/CONTROL OUTPUT;
/EP1.CON(1)/CONTROL: PRESET;
/EP1.CON(1)/CONTROL: QLOC;
/EP1.CON(1)/CONTROL/D1 CK;
/EP1.CON(1)/CONTROL/D1 CLEAR
/EPl.CON(1)/CONTROL/D1 D D
/EP1. CON(1)/CONTROL/Dl PRESET
/EPI.CON(1)/CONTROL/Dl Q ;
/EP1.CON(1)/CONTROL/D.EDGE_TRIGGERED_D: CK'DELAYED_26_5;
/EPI.CON(1)/CONTROL/D1.EDGE_TRIGGEREDD :CK',DELAYED_26 -7;
/EP1.CON(1)/CONTROL/D1.EDGE_TRIGGERED_D :CK'DELAYED_267'STABLE26.;
/EP1.CON(1)/CONTROL/Dl.EDGETRIGGERED_D :CK'DELAYED43_D ;.
/EPl.CON(1)/CONTROL/D1.EDGETRIGGERED_D :CK'DELAYED_43_F;
/EP1.CON(1)/CONTRQL/D1.EDGETRIGGEREDD :CK ,DELAYED_43_.F'STABLE_43_H;
/EP1.CON(1)/CONTROL/D1.EDGE_TRIGGERED_D :CK'DELAYED_52_I
/EP1.CON(1)/CONTROL/D1.EDGETRIGGEREDD :CK'DELAYED-52_I'STABLE_52_K;
/EP1.CON(1)/CONTROL/D1.EDGETRIGGERED_D :CK'STABLE_13_1;
/EP1.CON(1)/CONTROL/D1.EDGETRIGGERED_D :CK STABLE_18_3;
/EP1.CON(1)/CONTROL/D1.EDGE_TRIGGERED_D :CK STABLE_35_B;
/EP1.CON(1)/CONTROL/D1.EDGE_TRIGGERED_D :CK STABLE_52_L;
/EP1.CON(1)/CONTROL/Dl.EDGE_TRIGGERED_D :CK'STABLE_59_M;
/EP1.CON(l)/CONTROL/Dl.EDGETRIGGEREDD :D'STABLE_18_2;
/EP1.CON(1)/CONTROL/D1.EDGE_TRIGGERED_D :D'STABLE_26_4;
/EP1. CON(1)/CONTROL/D1. EDGETRIGGEREDD :GUARD;
/EP1.CON(1)/CONTROL/D1.EDGETRIGGERED_D :PRESET'STABLE_35_A;
/EP1.CON(1)/CONTROL/D1.EDGETRIGGERED_D :PRESET'STABLE_43_C;
/EP1.CON(1)/CONTROL/D1.EDGETRIGGERED_D :S
/EP1.CON(2) :CLK'TYPE_CONV_79_C
/EP1.CON(2) :PIN_1'DELAYED_79_A
/EPI.CON(2)/CONTROL :CLEAR
/EP1.CON(2)/CONTROL :CLK;
/EP1.CON(2)/CONTROL :FEEDBACK
/EP1.CON(2)/CONTROL : 10PIN;
/EP1.CON(2)/CONTROL :ORIN;
/EP1.CON(2)/CONTROL :OUTPUT;
/EP1.CON(2)/CONTROL :PRESET;
/EP1.CON(2)/CONTROL : _LOC;
/EP1.CQN(2)/CONTROL/D1 :CK;
/EP1.CON(2)/CONTROL/D1 CLEAR
/EP1.CON(2)/CONTROL/Dl D D
/EPl.CON(2)/CONTROL/D1 PRESET
/EPl.CON(2)/CONTROL/D1 Q ;
/EP1.CON(2)/CONTROL/D1.EDGE_TRIGGEPED_D :CK'DELAYED_26_5;
/EPl.CON(2)/CONTROL/D1.EDGE_TRIGGERED_D :CK'DELAYED_2697
/EP1. CON(2)/CONTROL/D1. EDGE_TRIGGERED_D :CK DELAYED_26_7'STABLE_26_9
/EP1. CON(2)/CONTROL/D1. EDGETRIGGEREDD :CK DELAYED_43_D

110

/EP1.CON(2)/CONTROL/Dl.EDGETRIGGERED_D CK'DELAYED_43_F;
/EP1. CON(2)/CONTROL/D1. EDGETRIGGERED-D CK'DELAYED_43F'STABLE43_H;
/EP1. CON(2)/CONTROL/D1. EDGETRIGGEREDD CK'DELAYED_52_II;
/EP1.CON(2)/CONTROL/D1.EDGETRIGGEREDD CK'DELAYED_52_I STABLE_52_K;
/EP1.CON(2)/CONTROL/Dl.EDGETRIGGERED-D CK'STABLE_13_1;
/EP1.CON(2)/CONTROL/Dl.EDGE_-TRIGGEREDD CK'STABLE_18_3;
/EPl.CON(2)/CONTROL/D1.EDGETRIGGEREDD CK'STABLE_35_B;
/EP1.CON(2)/CONTROL/D1.EDGETRIGGEREDD CK'STABLE_52_L,
/EP1.CON(2)/CONTROL/Dl.EDGETRIGGEREDD CK'STABLE_59_M;
,EPl.CON(2)/CONTROL/D1.EDGETRIGGEREDD :D'STABLE_18_2
DEC-13-1988 14: 26: 12 VHDL Simulator PAGE 3

SIGNAL NAME MAP
KERNEL = «<SHU >TESTEP3

/EP1.CON(2)/CONTROL/D.EDGETRIGGEREDD: D'STABLE_26_4
/EP1.CON(2)/CONTROL/D1.EDGETRIGGERED_D :GUARD;
/EPl.CON(2)/CONTROL/DI.EDGETRIGGERED_D PRESET'STABLE_35_A;
/EP1.CON(2)/CONTROL/D1.EDGETRIGGERED_D :PRESET'STABLE_43_C;
/EP1. CON(2)/CONTROL/D1. EDGE-TRIGGERED_D :S
/EPl.CON(3) :CLK'TYPECONV_79_C;
/EP1.CON(3) PIN_1'DELAYED_79_A;
/EP1.CON(3)/CONTROL :CLEAR
/EP1.CON(3)/CONTROL :CLK;
/EP1.CON(3)/CONTROL FEEDBACK
/EP1.CON(3)/CONTROL 10_PIN;
/EP1.CON(3)/CONTROL OR_IN;
/EP1.CON(3)/CONTROL :OUTPUT;
/EP1.CON(3)/CONTROL :PRESET
/EPl.CON(3)/CONTROL :LLOC
,(EPl.CON(3)/CONTROL/Dl CK
JnP1.CON(3)/CONTROL/Dl CLEAR
/EP1.CON(3)/CONTROL/D1 D D
/EP1.CON(3)/CONTROL/Dl PRESET
/EP1.CON(3)/CONTROL/D1 Q ;
/EP1.CON(3)/CONTROL/D1.EDGE_TRIGGEREDD :CK'DELAYED_26_5;
/EP1. CON(3)/CONTROL/D1. EDGE-TRIGGERED_D CK'DELAYED_26_7
/EPl.CON(3)/CONTROL/D1.EDGE_TRIGGERED_D :CK'DELAYED_26_7t STABLE_26_9;
/EP1. CON(3)/CONTROL/D1. EDGE_TRIGGEREDD :CK'DELAYED43...D
/EP1. CON(3)/CONTROL/D1. EDGETRIGGERED_D :CK'DELAYED_43jF
/EP1.CON(3)/CONTROL/Dl.EDGE_TRIGGEREDD :CK'DELAYED_43F'STABLE43_H;
/EP1.CON(3)/CONTROL/Dl.EDGETRIGGERED_D :CK'DELAYED_52.I;
/EPI. CON(3)/CONTROL/DI. EDGETRIGGERED_D CK'DELAYED52..I 'STABLE.52..K;
/EP1. CON(3)/CONTROL/D1. EDGE_TRIGGEREDD :CK'STABLE_13_1;
/EP1. CON(3)/CONTROL/D1. EDGETRIGGEREDD :CK'STABLE_18_3;
/EP1. CON(3)/CONTROL/D1. EDGE-TRIGGEREDD :CK'STABLE_35_B;
/EP1. CON(3)/CONTROL/D1. EDGETRIGGEREDD :CK'STABLE_52_L;
/EP1.CON(3)/CONTROL/D1.EDGE_TRIGGEREDD :CK'STABLE_59_M;
/EP1.CON(3)/CONTROL/D1.EDGETRIGGEREDD :D'STABLE_18_2
/EP1.CON(3)/CONTROL/D1.EDGETRIGGEREDD :D'STABLE_26_4
/EP1. CON(3)/CONTROL/D1. EDGETRIGGERED_D GUARD;
/EP1.CON(3)/CONTROL/D1.EDGETRIGGERED_D :PRESET'STABLE_35_A;
/EP1.CON(3)/CONTROL/D1.EDGETRIGGERED_D :PRESET'STABLE_.43_C;
/EPl.CON(3)/CONTROL/Dl.EDGETRIGGERED_D S
/EP1.CON(4) :CLK'TYPE_CONV_79_C
/EP1.CON(4) PIN_ 1'DELAYED_79_A
/EP1.CON(4)/CONTROL : CLEAR

/EP1.CON(4)/CONTROL CLK
/EPl.CON(4)/CONTROL FEEDBACK
/EP1.CON(4)/CONTROL 10_PIN;
/EP1.CON(4)/CONTROL ORIN;
/EPl.CON(4)/CONTROL :OUTPUT;
/EP1.CON(4)/CONTROL :PRESET;
/EP1.CON(4)/CONTROL Q..LO;
/EP1.CON(4)/CONTROL/Dl CK;
/EP1.CON(4)/CONTROL/D1 CLEAR
/EP1.CON(4)/CONTROL/D1 : D;
/EP1.CON(4)/CONTROL/D1 PRESET
/EPl.CON(4)/CONTROL/D1 Q;
/EP1. CON(4)/CONTROL/D1. EDGE_-TRIGGEREDD :CK'DELAYED_26...;
/EP1. CON(4)/CONTROL/Dl. EDGETRIGGEREDD :CK'DELAYED_26_7;
DEC-13-1988 14: 26: 12 VHDL Simulator PAGE 4

SIGNAL NAME MAP
KERNEL = «<SHU >TESTEP3

/EP1.CON(4)/CONTROL/D.EDGETRIGGEREDD: CK'DELAYED26_7'STABLE_26_9;
/EP1. CON(4)/CONTROL/D1. EDGETRIGGEREDD CK 1 DELAYED_43_D;
/EP1.CON(4)/CONTROL/D1.EDGETRIGGEREDD CK'DELAYED_43_F;
/EPI. CON(4)/CONTROL/D1. EDGETRIGGEREDD :CK'DELAYED_43-F'STABLE_43_H;
/EP1.CON(4)/CONTROL/D1.EDGETRIGGERED_D :CK'DELAYED_52_I
/EP1.CON(4)/CONTROL/D1.EDGETRIGGEREDD :CK'DELAYED_52_I'STABLE_52_K;
/EP1.CON(4)/CONTROL/D1.EDGETRIGGEREDD :CK'STABLE_13_1;
/EP1.CON(4)/CONTROL/D1.EDGETRIGGEREDD :CK'STABLE_18_3;
/EP1.CON(4)/CONTROL/D.EDGE-.TRIGGEREDD :CK'STABLE_35_B;
/EP1.CON(4)/CONTROL/D1.EDGETRIGGERED_D :CK'STABLE_52_L;
/EP1. CON(4)/CONTROL/D1. EDGETRIGGEREDD CK'STABLE_59_M
/EP1.CON(4)/CONTROL/D1.EDGETRIGGEREDD :D'STABLE_18_2;
/EPl.CON(4)/CONTROL/Dl.EDGETRIGGEREDD D STABLE_26_4;
/EP1. CON(4)/CONTROL/D1. EDGE_TRIGGERED_D GUARD;
/EP1. CON(4)/CONTROL/D1. EDGE_TRIGGERED_D :PRESET'STABLE_35_A;
/EP1. CON(4)/CONTROL/D1. EDGE_TRIGGEREDD :PRESET'STABLE-43.C;
/EP1. CON(4)/CONTROL/D1. EDGETRIGGERED_D :S
/EP1. CON(S) :CLK TYPECONV_79_C
/EP1.CON(5) :PIN_1'DELAYED_79_A
/EP1. CON(S)/CONTROL :CLEAR
/EP1.CON(5)/CONTROL :CLK;
/EP1. CON(S)/CONTROL :FEEDBACK
/EP1. CON(S)/CONTROL 10 PIN;
/EP1. CON(S)/CONTROL :ORN;
/EP1. CON(S)/CONTROL :OUTPUT;
/EP1. CON(S)/CONTROL :PRESET;
/EP1. CON(S)/CONTROL QLOC;
/EP1.CON(S)/CONTROL/D1 CK;
/EP1.CON(5)/CONTROL/D1 CLEAR
/EP1.CON(5)/CONTROL/D1 D ;
/EP1.CON(5)/CONTROL/Dl PRESET
/EP1.CON(S)/CONTROL/D1 Q;
/EP1. CON(S)/CONTROL/Di. EDGETRIGGEREDD :CK'DELAYED_26_5;
/EP1.CON(S)/CONTROL/D1.EDGE_TRIGGEREDD :CK DELAYED_26_7;
/EP1. CON(S)/CONTROL/Di. EDGETRIGGEREDD CK DELAYED_26_7'STABLE_26_9;
/EP1.CON(S)/CONTROL/D1.EDGETRIGGEREDD :CK DELAYED_43_D
/EP1. CON(S)/CONTROL/Dl. EDGETRIGGEREDD CK DELAYED_43_F
/EP1. CON(S)/CONTROL/Di. EDGETRIGGEREDD :CK DELAYED_43_Ft STABLE_43_H;

1 12

/EPl. CON(5)/CONTROL/D1. EDGE_-TRIGGEREDD :CK'DELAYED_52_I
/EP1.CON(5)/CONTROL/D1.EDGETRIGGEREDD CK'DELAYED52-'STABLE52.K
/EP1.CON(5)/CONTROL/D1.EDGETRIGGEREDD CK'STABLE_13_1;
/EP1.CON(5)/CONTROL/D1.EDGETRIGGERED_D :CK'STABLE_18_3;
/EP1.CON(5)/CONTROL/D1.EDGETRIGGERED_D CK'STABLE_35_B;
/EPl.CON(5)/CONTROL/D1.EDGETRIGGERED-D CK'STABLE_52_L;
/EP1.CON(5)/CONTROL/D1.EDGETRIGGEREDD CK'STABLE_59_M;
/EP1.CON(5)/CQNTROL/Dl.EDGETRIGGEREDD D'STABLE_18_2;
/EP1.CON(5)/CONTROL/D1.EDGETRIGGEREDD D'STABLE_26_4;
/EP1.CON(5)/CONTROL/Dl.EDGETRIGGERED_D GUARD;
/EPl. CON(5)/CONTROL/D1. EDGETRIGGERED_D PRESET'STABLE_-35-A
/EPl.CON(5)/CONTROL/D1.EDGE_-TRIGGERED_D PRESET'STABLE_43_C
/EP1.CON(5)/CONTROL/D1.EDGETRIGGERED_D S
/EP1.CON(6) :CLK'TYPECONY_79_C;
/EP1.CON(6) :PIN_1'DEL.AYED_79_A;
/EPl.CON(6)/CONTROL CLEAR
/EPl.CON(6)/CONTROL :CLK;
/EPl.CON(6)/CONTROL :FEEDBACK
DEC-13-1988 14: 26: 12 VHDL Simulator PAGE 5

SIGNAL NAME MAP
KERNEL = <<SHU >TESTEP3

/EP1.CON(6)/CON7ROL 10_PIN
/EP1.CON(6)/CONTROL ORIN
/EP1.CON(6)/CONTROL :OUTPUT
/EP1.CON(6)/CONTROL :PRESET
/EP1.CON(6)/CONTROL :QLOC
/EP1.CON(6)/CONTROL/D1 CK
/EP1.CON(6)/CONTROL/D1 :CLEAR
/EPl.CON(6)/CONTROL/Dl D ;
/EP1.CON(6)/CONTROL/D1 PRESET
/EP1.CON(6)/CONTROL/D1 Q ;
/EP1.CON(6)/CONTROL/D1.EDGETRIGGERED_D :CK'DELAYED_26-5;
/EP1.CON(6)/CONTROL/D1.EDGE_TRIGGEREDD :CK'DELAYED_26_7;
/EPl. CON(6)/CONTROL/D1. EDGETRIGGEREDD :CK'DELAYED_26_7'STABLE_26_9;
/EP1.CON(6)/CONTROL/D1.EDGE_TRIGGEREDD :CK'DELAYED_43_D
/EP1.CON(6)/CONTROL/D1.EDGETRIGGEREDD :CK'DELAYED_43j ;
/EP1.CON(6)/CONTROL/D1.EDGETRIGGERED_D: CK'DELAYED_43_F'STABLE.43.H;
/EPl. CON(6)/CONTROL/D1. EDGETRIGGEREDD :CK'DELAYED_521I
/EP1.CON(6)/CONTROL/D1.EDGETRIGGEREDD :CK'DELAYED_52_I'STABLE.52_K;
/EP1. CON(6)/CONTROL/D1. EDGE_TRIGGEREDD :CK'STABLE_ 13_I
/EP1. CON(6)/CONTROL/D1. EDGETRIGGEREDD :CK'STABLE_18_3
/EP1.CON(6)/CONTROL/D1.EDGETRIGGERED_D :CK'STABLE_35_B
/EP1.CON(6)/CONTROL/D1.EDGETRIGGEREDD :CK'STABLE_52_L
/EPl.CON(6)/CONTROL/D1.EDGETRIGGERED_D :CK'STABLE_59_M
/EPl. CON(6)/CONTROL/D1. EDGE_TRIGGERED_D :D'STABLE_18_2
/EP1. CON(6)/CONTROL/D1. EDGE_TRIGGEREDD :D'STABLE_26_4
/EP1.CON(6)/CONTROL/D1.EDGETRIGGERED_D :GUARD;
/EP1.CON(6)/CONTROL/D1.EDGETRIGGERED_D :PRESET'STABLE_35_A;
/EP1. CON(6)/CONTROL/D1. EDG1LTRIGGEREDD :PRESET' STABLE_43_.C;
/EP1. CON(6)/CONTROL/D1. EDGE_TRIGGERED.D :S
/EP1.CON(7) :CLK'TYPE-CONV_79_C;
/EP1.CON(7) :PIN_1'DELAYED_79_A;
/EP1.CON(7)/CONTROL :CLEAR
/EP1.CON(7)/CONTROL :CLK;
/EP1.CON(7)/CONTROL :FEEDBACK

113

/EP1.CON(7)/CONTROL 10 PIN ;
/EP1.CON(7)/CONTRQL ORIN;
/EPl.CON(7)/CONTROL OUTPUT;
/EP1.CON(7)/CONTROL PRESET;
/EP1.CON(7)/CONTROL :Q..LOC;
/EP1.CQN(7)/CONTROL/D1 CK;
/EPl.CON(7)/CONTROL/D1 CLEAR
/EPl.CON(7)/CONTROL/Dl D;
/EPl.CON(7)/CONTROL/D1 :PRESET
/EPl.CON(7)/CONTROL/Dl Q;
/EP1.CON(7)/CONTROL/D1.EDGETRIGGEREDD CK'DELAYED_26_5
/EP1.CON(7)/CONTROL/D1.EDGETRIGGERED_D CK'DELAYED_26_7;
/EP1.CON(7)/CONTROL/D.EDGETRIGGERED_D CK IDELAYED_26_7 STABLE_26_9;
/EP1. CON(7)/CONTROL/D1. EDGETRIGGERED_D :CK'DELAYED_43_D;
/EP1. CON(7)/CONTROL/D1. EDGETRIGGEREDD CK'DELAYED_43_F;
/EP1.CON(7)/CONTROL/D1.EDGETRIGGERED_D :CK'DELAYED_43_F'STABLE_43_H;
/EP1. CON(7)/CONTROL/D1. EDGETRIGGERED_D CK DELAYED52_I
/EP1.CON(7)/CONTROL/D1.EDGETRIGGEREDD :CK1DELAYED-52_I'STABLE_52_K;
/EP1. CON(7)/CONTROL/D1. EDGETRIGGEREDD CK'STABLE_13..1
/EPl.CON(7)/CONTROL/D1.EDGETRIGGERED_D CK'STABLE_18_3
/EP1.CON(7)/CONTROL/D1.EDGETRIGGEREDD CK'STABLE_35_B
/EP1.CON(7)/CONTROL /D1.EDGETRIGGERED_D :CK'STABLE_52_L
DEC-13-1988 14: 26: 12 VHDL Simulator PAGE 6

SIGNAL NAME MAP
KERNEL = «<SHU >TESTEP3

/EPl. CON(7)/CONTROL/Dl. EDGETRIGGERED_D :CK'STABLE_59_M
/EPl.CON(7)/CONTROL/Dl.EDGETRIGGEREDD D'STABLE_-18_2
/EP1.CON(7)/CONTROL/D1.EDGETRIGGERED_D :D'STABLE_26_4
/EP1.CON(7)/CONTROL/D1.EDGETRIGGERED_D :GUARD;
/EP1.CON(7)/CONTROL/D1.EDGETRIGGERED_D :PRESETtSTABLE_35_A;
/EP1. CON(7)/CONTROL/D1. EDGETRIGGERED_D PRESET'STABLE-.43-C;
/EP1.CON(7)/CONTROL/D1.EDGE_TRIGGERED_D :S
/EP1.CON(8) :CLK'TYPE_CONV_79_C;
/EP1.CON(8) :PIN_1'DELAYED_79_A;
/EP1.CON(8)/CONTROL CLEAR
/EP1.CON(8)/CONTROL :CLK
/EP1.CON(8)/CONTROL FEEDBACK
/EP1.CON(8)/CONTROL 10.PIN;
/EP1.CON(8)/CONTROL OR_IN;
/EP1.CON(8)/CONTROL OUTPUT;
/EP1.CON(8)/CONTROL :PRESET;
/EP1.CON(8)/CONTROL :QLOC;
/EP1.CON(8)/CONTROL/D1 K CX
/EP1.CON(8)/CONTROL/D1 CLEAR
/EP1.CON(8)/CONTROL/D1 D D
/EP1.CON(8)/CONTROL/D1 PRESET
/EP1.CON(8)/CONTROL/D1 Q;
/EP1. CON(8)/CONTROL/D1. EDGE-TRIGGEREDD :CK'DELAYED_26.5;
/EP1. CON(8)/CONTROL/D1. EDGETRIGGERED_D :CKtDELAYED_26_7
/EP1.CON(8)/CONTROL/D1.EDGE-TRIGGERED_D :CK'DELAYED_26_7'STABLE_26_9;
/EP1. CON(8)/CONTROL/ D1.EDGETRIGGERED_D CK'DELAYED_43_D
/EP1.CON(8)/CONTROL/D1.EDGETRIGGERED-D :CK'DELAYED_43_F
/EP1.CON(8)/CONTROL/D.EDGETRIGGEREDD :CK'DELAYED_43_F'STABLE_43_H;
/EP1. CON(8)/CONTROL/D1. EDGETRIGGEREDD :CK'DELAYED_52_I;
/EP1.CON(8)/CONTRCL/D1.EDGETRIGGERED-D :CK DELAYED_52_I'STABLE_52_K;

114

/EPI.CON(8)/CONTROL/Dl.EDGETRIGGEREDD :CK'STABLE_13_1;
/EPl. CON(8)/CONTROL/Dl. EDGETRIGGEREDD :CK'STABLE.18-3;
/EP1.CON(8)/CONTROL/Dl.EDGETRIGGEREDD :CK'STABLE_35_B;
/EP1.CON(8)/CONTROL/D1.EDGETRIGGEREDD :CK'STABLE_52_L;
/EP1.CON(8)/CONTROL/D1.EDGETRIGGEREDD :CK'STABLE_59_M;
/EP1.CON(8)/CONTROL/D1.EDGETRIGGERED_D :D'STABLE_18_2;
/EP1.CON(8)/CONTROL/D1.EDGETRIGGERED-D :D'STABLE_26_4;
/EPI. CON(8)/CONTROL/D1. EDGETRIGGEREDD :GUARD;
/EP1. CON(8)/CONTROL/Dl. EDGETRIGGEREDD :PRESET' STABLE_35_ ;
/EPI.CON(8)/CONTROL/Dl.EDGETRIGGEREDD :PRESET'STABLE_43_C;
/EP1. CON(8)/CONTROL/Di. EDGETRIGGEREDD :S
/EPl.M(1)/MlACRO A(1 TO 18)
/EPl.M(1)/ CR0 EN;
/EPl.M(1)/ CRO :EN_LOC
/EP1.M(1)/MiCRO LOC(1 TO 8)
/EPl.M(1)/MACRO OR..OUT;
/EP1. M(1)/MACRO. P(1)/ELEMENT :P -OUT;
/EPl.M(1)/MACRO.P(1)/ELEMENT :X(1 TO 18)
/EP1.M(l)/MACRO.P(2)/ELEMENT :POUT;
/EP1.M(1)/MACRO.P(2)/ELEMENT :X(1 TO 18)
/EP1.M(1)/MACRO.P(3)/ELEMENT :P OUT;
/EPl.M(1)/MACRO.P(3)/ELEMENT :X(1 TO 18)
/EP1.M(1)/MACRO.P(4)/ELEMENT :P -OUT;
/EP1.M(1)/MACRO.P(4)/ELEMENT :X(1 TO 18)
/EP1. M(1)/MACRO. P(S)/ELEMENT :P -OUT;
/EP1.M(1)/MACRO.P(5)/ELEMENT : X(1 TO 18)
DEC-13-1988 14:26:12 VHDL Simulator PAGE 7

SIGNAL NAME MAP
KERNEL = «<SHUTEST.EP3

/EP1.M(l)/MACRO.P(6)/ELEMENT P-OUT
/EP1.M(1)/MACRO.P(6)/ELEMENT X(l TO 18);
/EPl.M(1)/MACRO.P(7)/ELEMENT P-OUT;
/EPl.M(1)/MACRO.P(7)/ELEMENT X(1 TO 18);
/EP1. M(1)/MACRO. P(8)/ELEMENT P...OUT;
/EP1.M(l)/MACRO.P(8)/ELEMENT X(1 TO 18);
/EP1.M(1)/MACRO/OE P..OUT;
/EP1.M(1)/MACRO/OE X(1 TO 18)
/EPl.M(2)/MACRO A(1 TO 18)
/EP1.M(2)/MACRO :EN;
/EP1.M(2)/MACRO ENLOC
/EP1.M(2)/MACRO :LOC(1 TO 8)
/EPl.M(2)/MACRO :OROUT;
/EP1.M(2)/MACRO.P(1)/ELEMENT POUT;
/EP1.M(2)/MACRO.P(1)/ELEMENT X(1 TO 18);
/EP1. N(2)/MACRO. P(2)/ELEMENT :POUT;
/EP1.M(2)/MACRO.P(2)/ELEMENT :X(1 TO 18);
/EP1.M(2)/MACRO.P(3)/ELEMENT P..0UT;
/EPl.M(2)/MACRO.P(3)/ELEMENT X(1 TO 18);
/EP1.1(2)/MACRO.P(4)/ELEMENT P_.OUT;
/EP1.M(2)/MACRO.P(4)/ELEMENT X(1 TO 18);
/EP1. M(2)/MACRO. P(S)/ELEMENT P..OUT;
/EP1. M(2)/MACRO. P(S)/ELEMENT :X(1 TO 18);
/EP1.M(2)/MACRO.P(6)/ELEMENT :P-OUT;
/EP1.M(2)/MACRO.P(6)/ELEMENT :X(1 TO 18);
/EP1.M(2)/MACRO. P(7)/ELEMENT :P.OUT;

IliS

/EP1.M(2)/MACRO.P(7)/ELEMENT X(1 TO 18)
/EPl.M(2)/MACRO.P(8)/ELEMENT P...OUT;
/EPl.M(2)/MACRO.P(8)/ELEMENT X(1 TO 18)
/EP1.M(2)/MACRO/OE :P_..OUT,;
/EP1.M(2)/MACRO/OE : X(1 To 18)
/EP1.M(3)/MACRO A(1 TO 18);
/EP1. M(3) /MACRO EN;
/EPI.LY(3)/MACRO :ENLOC
/EPl.M(3)/MACRO LOC(1 TO 8)
/EP1.M(3)/MACRO OROUT;
/EPl.M(3)/MACRO.P(1)/ELEMENT POUT;
/EPl.M(3)/MACRO.P(1)/ELEMET' X(1 TO 18)
/EP1.M(3)/MACRO.P(2)/ELEMENT POUT;
/EPl.M(3)/MACRO.P(2)/ELE.E-r X(1 TO 18)
/EP1. M(3)/MACRO. P(3)/ELEMENTr P_OUT;
/EPl.M(3)/MACRO.P(3)/ELEMENT X(1 TO 18)
/EPl.M(3)/MACRO.P(4)/ELEMENT POUT ;
/EPI.M(3)/MACRO.P(4)/ELEMENT X(1 TO 18)
/EP1.M(3)/MACRO.P(5)/ELEMENT P..OUT;
/EP1.M(3)/MACRO.P(5)/ELEMENT X(1 TO 18)
/EP1.M(3)/MACRO.P(6)/ELEMENT POUT;
/EPl.M(3)/MACRO.P(6)/ELEMENT :X(1 TO 18)
/EP1.M(3)/MACRO.P(7)/ELEMENT P-OUT ;
/EPl.M(3)/MACRO.P(7)/ELEIIENT X(1 TO 18)
/EP1.M(3)/MACRO.P(8)/ELENDT P-OUT;
/EP1. M(3)/MACRO. P(8)/EL1E*,TT X(1 TO 18)
/EP1.M(3)/MACRO/OE POUT;
/EP1.M(3)/MACRO/OE X(1 TO 18);
/EP1.M(4)/MACRO A(1 TO 18)
/EP1.M(4)/MACRO EN;
DEC-13-1988 14:26: 12 VHDL Simulator PAGE 8

SIGNAL NAME MAP
KERNEL = «<SHU TESTEP3

/EP1.M(4)/MACRO :EN LOG
/EP1.M(4)/MACRO :LOC(1 TO 8)
/EP1.M(4)/MACRO :OR_-OUT;
/EP1.M(4)/MACRO.P(1)/ELEMEN : P-OUT;
/EP1.M(4)/MACRO.P(1)/ELEMIENT X(1 TO 18)
/EP1. M(4)/MACRO. P(2)/ELEtIENT :P-OUT;
/EP1.M(4)/MACRO.P(2)/ELEMENT :X(1 TO 18)
/EP1.M(4)/MACRO.P(3)/ELEMENT :P-OUT;
/EP1.M(4)/MACRO.P(3)/ELEMENT :X(1 TO 18)
/EP1.M(4)/MACRO.P(4)/ELEMENT :P-OUT;
/EP1.M(4)/MACRO.P(4)/ELEMENT :X(1 TO 18)
/EP1. M(4)/MACRO. P(5)/ELEMENT :P..OUT;
/EP1.M(4)/MACRO.P(5)/ELEMENT X(1 TO 18)
/EP1. M(4)/MACRO. P(6)/ELEMENT :P-OUT;
/EP1.M(4)/MACRO.P(6)/ELEMENr X(1 TO 18)
/EP1.M(4)/MACRO.P(7)/ELEMENT :P-OUT;
/EP1.M(4)/MACRO.P(7)/ELEMEN"T X(1 TO 18)
/EP1.M(4)/MACRO.P(8)/ELEM1EN'T P-OUT;
/EP1.M(4)/MACRO.P(8)/ELEMENT :X(1 TO 18)
/EP1.M(4)/MACRO/OE :POUT;
/EP1.M(4)/MACRO/OE :X(1 TO 18)
/EP1.M(5)/MACRO :A(1 TO 18)

116

/EPl.M(5)/MACRO EN
/EP1.M(5)/MACRO EN..LOC
/EP1.M(5)/MAGRO LOC(1 TO 8)
/EPl.M1(5)/MACRO OROUT;
/EPl.M1(5)/MACRO. P(1)/ELEMENT : POUT;
/EPI.M1(5)/MACRO. P(1)/ELEMENT :X(1 TO 18);
/EP1.M(5)/MACRO.P(2)/ELEMENT :P...OUT;
/EP1.M(5)/MACRO.P(2)/ELEMENT :X(1 TO 18);
/EPl.M(5)/MACRO.P(3)/ELEMENT :POUT;
/EP1.M1(S)/MACRO. P(3)/ELEMENT :X(1 TO 18);
/EP1. M(5)/MACRO. P(4)/ELEMENT :P..OUT;
/EP1.M(5)/MAGRO.P(4)/ELEMENT :X(1 TO 18);
/EP1.M1(5)/MACRO. P(S)/ELEMENT : P..0UT;
/EP1.M1(5)/MACRO. P(S)/ELEMENT :X(1 TO 18);
/EP1.M(5)/MACRO.P(6)/ELEMENT :P...OUT;
/EPl.M(5)/MACRO.P(6)/ELEMENT :X(1 TO 18);
/EP1.M(5)/MACRO.P(7)/ELEMENT : POUT;
/EP1.M1(5)/MACRO. P(7)/ELEMENT :X(1 TO 18);
/EP1.M1(5)/MACRO. P(8)/ELEMENT :P_.OUT;
/EP1.M1(5)/MACRO. P(8)/ELEMENT :X(1 TO 18);
/EP1.M(5)/MACRO/OE :POUT;
/EP1.M(5)/MACRO/OE X(1 TO 18)
/EPl.M(6)/MACRO A(1 TO 18)
/EP1.M(6)/MACRO EN;
/EP1.M(6)/MACRO ENLOG
/EP1.M1(6)/MACRO LOC(1 TO 8)
/EP1.M1(6)/-MACRO OROUT;
/EP1.M1(6)/MACRO. P(1)/ELEMENT P-OUT;
/EP1.M1(6)/MACRO. P(1)/ELEMENT X(1 TO 18);
/EP1.M1(6)/MACRO. P(2)/ELEMENT P-OUT;
/EP1.M1(6)/MACRO. P(2)/ELEMENT X(1 TO 18);
/EP1.M1(6)/MACRO. P(3)/ELEMENT POUT;
/EP1.M(6)/MACRO.P(3)/ELEMENT X(1 TO 18);
/EP1.M1(6)/MACRO. P(4)/ELEMENT POUT;
DEC-13-1988 14: 26: 12 VHDL Simulator PAGE 9

SIGNAL NAME MAP
KERNEL = «<SHUTEST-EP3

/EP1.M1(6)/MACRO. P(4)/ELEMENT X(1 TO 18);
/EP1.M(6)/MACRO.P(5)/ELEMENT POUT;
/EPI. M(6)/MACRO. P(S)/ELEMENT X(1 TO 18);
/EP1. 11(6)/MACRO. P(6)/ELEMENT :P..OUT;
/EP1.M(6)/MACRO.P(6)/ELEMENT X(1 TO 18);
/EP 1.M(6)/MACRO. P(7) /ELEMENT :POUT;
/EP1.M1(6)/MACRO. P(7)/ELEMENT X(1 TO 18);
/EP1.M(6)/MACRO.P(8)/ELEMENT :POUT;
/EP1.M1(6)/MACRO. P(8)/ELEMENT X(1 TO 18);
/EPI.M1(6)/MACRO/GE :P...OUT;
/EP1.M(6)/MACRO/OE :X(1 TO 18)
/EP1.M1(7)/MACRO :A(1 TO 18)
/EP1.M1(7)/MACRO EN;
/EP1.M(7)/MACRO EN_.LOC
/EP1.M(7)/MACRO LOC(1 TO 8)
/EP1.M(7)/MACRO :OROUT;
/EP1. 1(7)/MACRO. P(1)/ELEMENT :P-OUT
/EP1.M1(7)/MACRO. P(1)/ELEMENT :X(1 TO 18)

1 17

/EP1. M(7)/MACRO. P(2)/ELEMENT P...OUT;
/EP1.M(7)/MACRO.P(2)/ELEMENT X(1 TO 18);
/EP1.M(7)/MACRO. P(3)/ELEMENT :POUT;
/EP1.M(7)/MACRO.P(3)/ELEMENT X(1 TO 18);
/EP1.M(7)/MACRO.P(4)/ELEMENT POUT;
/EP1.M(7)/MACRO.P(4)/ELEMENT :X(1 TO 18);
/EP1.M(7)/MACRO.P(5)/ELEMENT POUT;
/ErPl.M(7)/MACRO.P(5)/ELEMENT X(1 TO 18)
/EP1.M(7)/MACRO.P(6)/ELEMENT P_OUT;
/'EPl.M(7)/MACRO.P(6)/ELEMENT X(l TO 18);
/EPI.M(7)/1MACRO.P(7)/ELEMENT P_OUT;
/EP1.M(7)/MACRO.P(7)/ELEMENT X(l TO 18)
/EP1.M(7)/MACRO.P(8)/ELEMENT POUT;
/EP1.M(7)/MACRO.P(8)/ELEMENT X(1 TO 18)
/EPl.M(7)/MACRO/OE :P_OUT;
/EP1.M(7)/MACRO/OE :X(1 TO 18)
/EP1.M(8)/MACRO A(1 TO 18)
/EP1.M(8)/MACRO EN -
/EP1.M(8)/MACRO EN..LOC
/EP1.M(8)/MACRO :LOG(1 TO 8)
/EP1.M(8)/MACRO OR-OUT;
/EP1.M(8)/MACRO. P(1)/ELEMENT POUT;
/EP1.M(8)/MAGRO.P(1)/ELEMENT :X(1 TO 18)
/EPl.11(8)/MACRO.P(2)/ELEMENT :P_OUT;
/EPI.M(8)/MACRO.P(2)/ELEMENT :X(1 TO 18)
/EP1.M(8)/MACRO.P(3)/ELEMENT P_OUT;
/EP1.M(8)/MACRO.P(3)/ELEMENT X(1 TO 18)
/EPl.M(8)/MACRO.P(4)/ELEMENT P_OUT;
/EPl.M(8)/MACRO.P(4)/ELEIENT X(1 TO 18);
'1EPi. M(8)/MACRO.P(5)/ELEMENT: POUT;

~P1.M(8)/MACRO.P(5)/ELEMENT: X(1 TO 18);
/EPl.M(8)/MACRO.P(6)/ELEMENT P_OUT;
/EP1.M(8)/MAGRO.P(6)/ELEMENT X(1 TO 18)
/EPl.M(8)/MAGRO.P(7)/ELEMENT P_OUT;
/EP1.M(8)/MACRO.P(7)/ELEMEN'T X(1 TO 18)
/EP1. M(8)/MACRO. P(8)/ELEMENT POUT;
/EPI.M(8)/MACRO.P(8)/ELEMENT :X(1 TO 18)
/EP1.M(8)/MACRO/OE : P_OUT;
DEC-13-1988 14: 26: 12 VHDL Simulator PAGE 10

SIGNAL NAME MAP
K(ERNEL = «SHU TESTEP3

/EP1.M(B)/MACRO/OE -X(1 TO 18);
/EP1/P P_OUT;
/EP1/P :X(1 TO 18) ;
/EP1/R P_OUT;
/EP1/R X(1 TO 18);

APPENDIX D. MACRO VAX/VMS SYSTEM COMMAND

A. MACRO VAX/VMS SYSTEM COMMAND FOR EP310 MODEL

!FILE NAME: Batch (for EP310 model)
$set def [shu.vhdl.altera]
$set verify
$vls setlib shu
$vhdl eprom..pack
$mg eprom..pack
$mg/body eprompack
$set def [shu.vhdl.altera.ep3lO]
$set verify
$vls setlib ep3lO
$vhdl ep3lO~pack
$mg ep3lQ..pack
$mg/body ep3lO..pack
$vhdl d...reg
$mg dregister(behavioral_2)
$vhdl p_term
$mng p.term(behavioral)
$vhdl macrocell
$mng macrocell(behavioral)
$vhdl io -control
$Mg iocontrol(behaviorall)
$vhdl ep3lO
$mg ep3lO(structural)
$set def [shu. vhdl. altera. ep3lO. testi
$set verify
$vls setlib shu
$vhdl test-bench
$vhdl test..ep3lO
$mg/top test_bench(ep3lO)
$build/replace/ker=test-ep3 test..bench(ep3lO)
$sim testep3/param=20000000,4
$rg test..ep3 test..ep3lO. rcl
$exit

1 19

B. MACRO VAX/VMS SYSTEMI COMMAND FOR EP1800 MODEL

!FILE NAME: Batch (for EP1800 model)
$set def [shu.vhdl.altera]
$set verify
$vls setlib shu
$vhdl eprom..pack
$mg eprom..pack
$mg/body eprompack
$set def [shu.vhdl.altera.epl800]
$set verify
$vls setlib ep1800
$vhdl epl8O0-pack
$mg epl8OQ..pack
$mg/body epl800_pack
$vhdl dreg
$mg d.register(behavioral)
$vhdl p..term
$mg p.term(behavioral)
$vhdl io...control
$mg io.control(behavioral)
$vhdl local -m
$mg local~jnacrocell(structural)
$vhdl global~jn
$mg global-macrocell(structural)
$vhdl quadrant
$mg quadrant(structural)
$vhdl epl800
$mg epl800(structural)
$set def [.shu. vhdl. altera. epl800. test]
$set verify
$vls setlib shu
$vhdl test -bench
$vhdl test..ep1800
$mg/top test..bench(ep1800)
$build/replace/kertest-count test_bench(epl800)
$sim test-count/paraO0,20/traceselect. signal
$rg testcount test-..ep1800. rcl
$exit

1-1o

LIST OF REFERENCES

1. "VHDL and System Design," in Defense Science & Electronics, Vol. 5, No. 10, pp.

49-52, October 1986.

2. J.R. Armstrong, "Chip-level modeling with HDLS," in IEEE Design & Test of

Computers, pp. 8-18, Febrary 1988.

3. James R. Armstrong, Chip-level modeling with VHDL, pp. 90-93, Prentice Hall,

Englewood Cliffs, New Jersey, 1989.

4. IEEE Standard VHDL Language Reference ,Ifanual, IEEE Inc., New York, 1987.

5. User's Manual for the Standard VtlDL 1076 Support Enviroment(draft), Intermet-

rics Inc., Bethesda, Maryland, 5 August 1988.

6. Altera Databook second printing, Altera Corporation, Santa Clara, California, Jan-

uary 198S.

7. "EPLD timing simulation," in Altera User-configurable Logic Applications

Handbook, pp. 83-95, Altera Corporation, Santa Clara, California, July 19SS.

8. "Counter Design," in Altera User-configurable Logic Applications Handbook, pp.

55-59, Altera Corporation, Santa Clara, Claifornia, January 19S8.

121

9. Richard Goering, "Modeling strategies simplify board-level simulation," in Comn-

puter Design, pp. 29-33, March 1988.

122

INITIAL DISTRIBUTION LIST

No. Copics

1.Defense Technical information Center
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 01422
Naval Postgraduate School
Monterey, CA 93943-5002

3. Department Chairman, Code 62
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor Chin-I Iwa Lee, Code 62L1e2(
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-50(30

5. Professor Jon T. Butler, Code 6211u
Decpartment of Flectrical and Computer Engineering
Nax-al P~ostgraduate School
M'vonterey, CA 93943-5000

6. Jim Armstrong
Virginia Tech, E.E. Dept
Blacksburg, VA 24061

7. Luis Concha
Electronics Technology Laboratory
\VRDC:11ELLI)
WPTAFB, Oil 45433

8. John WV. Ilines
USA F
WR1) C'E L I 1)
WVPAlYl, 01 1 45433-6543

9. Paul Ilfunter

Code 5305
Washington, DC 20375-506

10. Kim Karzaki
Al-FIENG
WPAA tFB
NVI"AEB, 011 45433

12

11. Steven Levitan
Univ. of Pittsburgh
Dept.Elec
348 Benedum Hall
Pittsburgh, IPA 15261

12. Carl Schaefer
Intermetrics, Inc.
4733 Bethesda Ave.
Bcthesda, MD 20815

13. Ronald Waxman
Univ. of Virginia
Dept. of EE
Thornton I lall
Charlottesville, VA 22903

124

